
Institut National des Langues et
Civilisations Orientales

Département Textes, Informatique, Multilinguisme

Response Generation in a Dialogue System:
Bouncing Back with Word Embeddings

par

Noor Alkhadhar

Master

Traitement Automatique des Langues
Recherche et Développement

Directeur de mémoire :
Mathieu Valette

Encadrant de stage :
David Houssin

Année universitaire 2017–2018

Je remercie
Mathieu Valette

David Houssin, et
Yufo Fukuda,

pour leur
présence,

soutien, et
souplesse.

CONTENTS

List of Figures 6

List of Tables 6

Introduction 9

I Background 11

1 Word Embeddings 13
1.1 Introduction . 13
1.2 History . 14
1.3 Methods . 17
1.4 Summary . 22

2 Analogy Resolution 23
2.1 Introduction . 23
2.2 Analogy test sets . 24
2.3 Methods for solving analogies . 27
2.4 Summary . 31
2.5 Results . 32
2.6 Summary . 36

II Ideation 39

3 Pepper the Robot 41
3.1 Introduction . 41
3.2 Pepper’s Dialogue Engine . 41
3.3 Human-Robot Interaction . 44
3.4 Summary . 44

4 Bouncing Back with Word Embeddings 45
4.1 Introduction . 45
4.2 Potential Advantages . 46

CONTENTS 5

4.3 Potential Disadvantages . 47
4.4 Summary . 49

IIIImplementation 51

5 Dialogue System 53
5.1 Introduction . 53
5.2 A Simple Dialogue System . 53
5.3 Word Vector Space . 54
5.4 Response Generation . 59
5.5 Results . 60
5.6 Summary . 61

6 Discussion 63
6.1 Introduction . 63
6.2 Discussion and Future Work . 63
6.3 Summary . 65

Conclusion 67

Bibliography 69

LIST OF FIGURES
1.1 CBOW model architecture (Mikolov, Chen, Corrado, & Dean, 2013) 18

1.2 Skip-gram model architecture (Mikolov, Chen, et al., 2013) 19

1.3 Performance of each method across different tasks (Levy, Goldberg, & Da-
gan, 2015) . 21

1.4 Comparing GloVe and fastText results on Word Analogy, Rare Words, and
Squad datasets (Mikolov, Grave, Bojanowski, Puhrsch, & Joulin, 2018) . . . 21

2.1 Multiple relations can be embedded for a single word in a high-
dimensional vector space (Mikolov, Yih, & Zweig, 2013) 24

2.2 Example test set patterns of the SemEval-2012 Task 2 (Jurgens, Turney,
Mohammad, & Holyoak, 2012) . 25

2.3 Test set patterns of the Microsoft Research analogy test set (Mikolov, Yih,
& Zweig, 2013) . 25

2.4 Categories and examples of the Google analogy test set (Mikolov, Chen, et
al., 2013) . 26

2.5 Categories and examples of the Bigger Analogy Test Set (Gladkova, Drozd,
& Matsuoka, 2016) . 28

2.6 When offsets are inconsistent or small, b* may still be correctly returned
if it is close to b (Linzen, 2016) . 30

2.7 Breakdown of results by category across different context window sizes
(Linzen, 2016) . 33

2.8 Results on the Google analogy test set (Drozd, Gladkova, & Matsuoka, 2016) 34

2.9 Performance of 3COSADD, 3COSAVG and LRCOS on BATS (Drozd et al.,
2016) . 35

4.1 Two-dimensional PCA projection of countries and their capital cities
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) 48

LIST OF TABLES
5.1 Results using 3COSADD to solve analogies in our vector space 57

5.2 Results using 3COSMUL to solve analogies in our vector space 57

LIST OF TABLES 7

5.3 Vectors closest to pizza in our vector space 58
5.4 Vectors closest to pants in our vector space 58

INTRODUCTION
This experimental research project seeks to gain a better understanding of word em-
beddings generated in a neural network layer. More precisely, we will attempt to use
these word vectors to construct a concept association mechanism in a dialogue sys-
tem, allowing it to bounce off previous input in order to spontaneously generate new
responses. The motivation behind this work is the desire to render a dialogue system
robust enough to be able to handle input sequences that are not accounted for in its
database of rules.

Part I

Background

C
H

A
P

T
E

R

1
WORD EMBEDDINGS

Contents
1.1 Introduction . 13
1.2 History . 14

1.2.1 Count-based Models . 14

1.2.2 Predictive Models . 15

1.3 Methods . 17
1.3.1 word2vec . 17

1.3.2 GloVe . 20

1.3.3 fastText . 20

1.4 Summary . 22

1.1 Introduction

In this first chapter, we will be discussing word embeddings in detail: from their
origins in linguistics, to their use in Natural Language Processing (NLP) via the Deep
Learning community. We will also go through the main types of word embedding
models: count-based models and predictive models. The latter category subdivides
further into explicit and implicit models, which differ in the way they calculate their
vectors. We will then survey some of the most common machine learning algorithms
used today for generating word embeddings: word2vec, gloVe, and fastText.

Before delving into the subject matter, a clarification is due. Throughout the years
and the scientific disciplines, several terms have appeared to refer to what is virtu-
ally the same thing: a Distributional Semantic Model (DSM). These distributed rep-
resentations of words, essentially co-occurrence matrices of words built from large
quantities of text, have been used as components in different models, be it in con-
tinuous space language models or as a way to study the relations between words
based on their co-occurrences in a given corpus. Hence, DSMs have been variously
called semantic spaces, continuous vector representations of words, continuous space
word representations, context-predicting models, and even neural language models,

14 CHAPTER 1. WORD EMBEDDINGS

depending on the method used to compute them. We will principally be using the
terms word embeddings and vector space throughout this study.

Put simply, in a word embedding space, each word is converted into a vector, and
the aim is to represent the word’s meaning mathematically through its vector. In
this sense, similar words should have similar vectors, and relations between vectors
should encode some kind of linguistic information between the words they represent.
This has been attempted in several different ways, which we will now explore.

1.2 History

1.2.1 Count-based Models

Within the field of linguistics, word embeddings were first developed in the sub-
field of distributional semantics, a research area whose core concept is defined by the
Distributional Hypothesis (Harris, 1954):

"linguistic terms with similar distributions have similar meanings"

The main objective of distributional semantics is therefore defined as the classifica-
tion of semantic similarities between words based on distributional properties deter-
mined by examining large quantities of text data.

Traditionally, DSMs were built by counting the contexts in which a certain word
appears in a corpus and stocking them in a vector, that vector becoming a sort of
meaning representation for the word. Since these DSMs built purely on co-occurence
counts had consistently shown low performance on several tasks (Baroni, Dinu, &
Kruszewski, 2014), two main methods have been applied in the aim to improve their
performance: using different weighting schemes for additional context information,
and dimensionality reduction techniques to compress the vectors.

With regard to using different weighting schemes in an attempt to improve the
performance of a count-based DSM, we add contextual informativeness by giving
more weight to less frequent words in the vocabulary. To illustrate, it is more mean-
ingful if a word co-occurs frequently with a rare noun or verb, rather than with a stop
word such as the or is. Two weighting schemes commonly used by the scientific com-
munity are positive Pointwise Mutual Information (positive PMI) and Local Mutual
Information. (Evert, 2005)

Word vectors can also be compressed in order to reduce the number of dimen-
sions they contain. This is commonly done through Singular Value Decomposition
(SVD) (Golub & Van Loan, 1996) and Non-negative Matrix Factorization (Lee & Se-
ung, 2000). This vector optimisation process, composed of adjusting weights within
the vectors and reducing vector dimensionality, is considered an unsupervised pro-
cess. However, it is usually indirectly supervised because several different settings

1.2. HISTORY 15

are tested and evaluated, and the best parameter setting is then selected depending
on the task at hand.

1.2.2 Predictive Models

With the appearance of the Vector Space Model (VSM) in the 1960s (Dubin, 2004)
first came the idea of using vectors to represent words mathematically. Specifically in
NLP, words were first represented as one-hot vectors where the number of columns
in the vector is equal to the size of the vocabulary, and the values for all of these
columns are 0, except for a single 1 in the column of the word that a given vector is
meant to represent. In this way, words are treated atomic units, and vectors encode
no information whatsoever on word similarity and how words interact.

This method was successful in representing documents as vectors for tasks such
as document filtering, classification, retrieval, and selection for query answering.
One of the most widely used schemes for calculating term weights in a document
vector is tf-idf, which stands for term frequency-inverse document frequency. Simply
put, given a corpus of documents, the tf-idf value increases with the frequency of a
certain term in a document, and decreases as the number of documents in the corpus
that also contain the term rises. (Jones, 1972 ; Luhn, 1957) In this way, we can take
into account that more frequent terms, such as stop words, generally tend to appear
more often in documents, and adjust for this by giving heavier weights to rarer terms.

This simple method of representing words as one-hot vectors, trained on large
quantities of data, yielded better results than more complex systems trained on
smaller quantities of data. For instance, in statistical language modelling, the n-
gram model (Brants, Popat, Xu, Och, & Dean, 2007) employed this method of repre-
sentation of words.

Successful in some domains, there are limits to this simple technique of words
represented as one-hot vectors. Although it is possible to train n-grams on large
quantities of text data (trillions of words as shown by Brants et al. (2007)), there are
other domains, such as machine translation (MT) and automatic speech recognition
(ASR), for which the available training data do not contain enough words for these
simple word representation techniques to be effective.

With the rise of machine learning and particularly deep learning in NLP came
the possibility to train more complex models on a much larger quantity of text data.
These much more complex neural network language models (NNLMs), were shown
to vastly improve on results obtained using n-gram models (Bengio, Ducharme,
Vincent, & Janvin, 2003 ; Mikolov, Karafiát, Burget, Cernocký, & Khudanpur, 2010 ;
Schwenk, 2007). The results achieved by these models were indeed impressive and
improved on previous methods, but the depth of the models meant that the way the

16 CHAPTER 1. WORD EMBEDDINGS

results were achieved remained a mystery, a black box. Their accuracy led some
to believe that the model actually understood natural language. Therefore, when
NNLMs first appeared, they caused a stir in the field of NLP with the belief that
they were a solution to many long-standing NLP problems.

Within an NNLM, high-dimensional real valued vectors, which have been con-
verted from words through a learned lookup table, are generated in one layer—the
embedding layer—and used as inputs to the neural network. In this way, the embed-
dings are a feature of the model. These word embeddings, learned from unlabelled
text data, marked a significant change in the means of production of representations
of words in a vector space. Furthermore, these distributed representations of words
(G.E. Hinton, 1986) proved to be more successful than one-hot vectors that
stored words simply as indices in a vocabulary.

It has been shown that the word embeddings generated in a layer of the NNLM
can have applications in several unrelated NLP tasks (Collobert & Weston, 2008 ;
Turian, Ratinov, & Bengio, 2010). That being said, an NNLM is very costly to
train, taking weeks to months depending on the amount of training data (Mikolov,
Chen, et al., 2013). If we remove all other, computationally expensive, components
of the NNLM besides the layer in which the word embeddings are produced, we
could theoretically create a highly optimised shallow machine learning algorithm for
producing word embeddings from text data.

Thus came into existence this new generation of DSMs, which set the vector
weights directly during model training as the vectors are being constructed. So, un-
like count-based models, which first collect context vectors for the words and then
perform vector transformation to re-weight the vectors, these new predictive mod-
els combine this into one step during which the vector weights are set to maximise
the probability of a word appearing in a certain context given a co-occurence window
of n history and future words or to best predict the context in which the word has
a tendency to appear in throughout the corpus—depending on the neural network
architecture being used.

These context-predicting vectors were initially simply a by-product of deep neural
network language models; they were a result of the embedding layer and were then
fed into the model as input. Seeing as they were developed within the machine
learning community, a lack of interdisciplinary awareness or communication meant
that researchers in the field had little or no knowledge of other DSM work in compu-
tational linguistics, namely the context-counting vectors we have discussed. Because
of this, there had been no previous work thoroughly comparing the performance of
these two types of models until Baroni et al. (2014) who concluded that predictive

1.3. METHODS 17

models consistently yield results superior to count models.

Several different shallow machine learning algorithms have been developed for
producing word embeddings, given a corpus of text data. In order to better under-
stand the behaviour of predictive models, the next section will examine some of the
most popular word embedding algorithms of this type.

1.3 Methods

1.3.1 word2vec

Mikolov, Chen, et al. (2013) released, with Google, the word2vec toolkit for learn-
ing word embeddings. One of the reasons they developed this toolkit was to show
that shallow neural networks can be used to generate very good word embeddings. It
was even argued that a shallow architecture such as that of word2vec is preferable
to deep networks because they are easier to optimise. This made it possible to train
the optimised shallow models on even more data much more quickly than NNLMs.
Mikolov also wished to debunk the belief that the NNLM understands human lan-
guage, by showing that the word embedding space encoded linguistic information
within the compositionality of its word vectors. We will explore this concept in a
more in-depth manner in Chapter 2.

By developing the word2vec toolkit, Mikolov, Chen, et al. (2013) highlighted the
danger of viewing deep learning as a solution for all NLP tasks, because the depth
of these models may cause the misleading view that the machine understands and
has learned to manipulate natural language. The authors also cut down the time
required to train the model and generate the word embeddings tremendously: from
several weeks to several days. In addition to this remarkable optimisation of training
time, word2vec is a much more computationally economic solution, dissolving the
necessity of training on a supercomputer to generate word embeddings.

The architecture of word2vec is an extension of Mikolov (2007) ; Mikolov,
Kopecky, Burget, Glembek, et Cernocky (2009). This work followed the method men-
tioned previously, which essentially consists of breaking down a complex deep neural
network language model into two steps: first learning the word vectors using a neu-
ral network with one hidden layer, and then training an NNLM using these word
vectors as input. The word2vec algorithm develops this first step of learning the
word vectors using a shallow neural network.

Having noticed that the complexity in both feedforward and recurrent NNLMs
stems mainly from their non-linear hidden layer, the authors of this paper present
two new log-linear models for computing word vectors. With these new model archi-
tectures, they aimed to maximise accuracy while minimising computational complex-

18 CHAPTER 1. WORD EMBEDDINGS

ity as compared to NNLMs.

Continuous Bag-of-Words Model

In the feedforward NNLM, the most computationally expensive layer is the hid-
den one in which the output word’s probability distribution over all the words in the
vocabulary is computed by a softmax classifier. The word2vec continuous bag-of-
words (CBOW) model optimises this layer significantly by using hierarchical softmax
instead. In this way, the non-linear hidden layer of the feedforward NNLM is re-
moved, and all words of the vocabulary are projected into the same position in the
projection layer—instead of only the projection matrix. (For a detailed explanation of

Figure 1.1 – CBOW model architecture (Mikolov, Chen, et al., 2013)

1.3. METHODS 19

the structure of a feedforward NNLM, see section 2.1 in Mikolov, Chen, et al. (2013))

This model is called bag-of-words because the order of words does not affect the
projection, seeing as the projection layer is shared by all words, and continuous be-
cause it uses continuous distributed representation of the context. The CBOW model
is a two-layer neural network, as illustrated in Figure 1.1: the input layer, a projec-
tion layer, and an output layer. Given a context window of n words, the model tries
to predict the word that would appear in that context. The word embeddings are
calculated in the projection layer.

Figure 1.2 – Skip-gram model architecture (Mikolov, Chen, et al., 2013)

20 CHAPTER 1. WORD EMBEDDINGS

Continuous Skip-gram Model

The second model presented in the paper is the skip-gram model which, inversely
to the CBOW model, takes in a single word as input and tries to predict the context
in which it would appear. The context range is defined by the model parameters;
increasing the range increases accuracy of the vectors generated, at the expense of
higher computational complexity. It is worth noting that not all words in the given
range are considered; rather, given a range n, the model will select a number r at
random between 1 and n and consider as correct labels r words before and r words
after the input word.

Figure 1.2 shows the architecture of the skip-gram model, composed of two layers
like the CBOW model, but differing from CBOW in that the input layer takes in a
single word and tries to correctly predict surrounding words.

1.3.2 GloVe

The development of GloVe (Global Vectors for Word Representation) by Penning-
ton, Socher, et Manning (2014) divides the category of predictive models into two
subcategories: implicit models such as word2vec, and explicit models, such as GloVe.
This type of model is called explicit because it claims to make explicit the features
needed in order to correctly encode linguistic information in the vector representa-
tions of words. It combines global matrix factorisation methods from models like
Latent Semantic Analysis (LSA) and local context window methods from models such
as the word2vec skip-gram model.

The authors of the article argue that both of these models are lacking: LSA per-
formance on the word analogy task (explained in Chapter 2) suggests "sub-optimal
vector space structure", and the skip-gram model fails to leverage global statistics of
the corpus—which may contain useful information—as it trains only on local context
windows. By combining the two models, the authors claim that they can improve
on the skip-gram architecture by using matrix factorisation methods and therefore
taking into account the co-occurence statistics of the corpus as a whole, information
that is not not taken advantage of by Mikolov, Chen, et al. (2013).

They conclude that, after a series of tests, GloVe performs better than word2vec.
However, Levy et al. (2015) conduct a careful analysis of the performance of sev-
eral embedding algorithms, and their results—in Figure 1.3—show higher accuracy,
shorter training time and less memory consumption for word2vec than for GloVe.

1.3.3 fastText

The fastText library, released by Facebook Research (Bojanowski, Grave, Joulin,
& Mikolov, 2016), builds on word2vec by including character n-gram information

1.3. METHODS 21

Figure 1.3 – Performance of each method across different tasks (Levy et al., 2015)

of the word as additional input in the first layer of the neural network—an inno-
vative characteristic that is lacking in other models such as word2vec and gloVe.
This means that fastText considers all character subsequences—within a set length
range—when computing the vector representation of a given word.

Where in the classic models, dark theoretically does not have anything in com-
mon with darker or darkest, subword information in the fastText model allows us to
account for this relation. The subword information also enables the model to effec-
tively handle out-of-vocabulary words by constructing their vector using the vectors
of subsequences. Additionally, we can compute better vectors for rare words that do
not appear in many contexts in the corpus by using the contexts of related words.

Figure 1.4 – Comparing GloVe and fastText results on Word Analogy, Rare Words,
and Squad datasets (Mikolov et al., 2018)

When it comes to enriching the word embeddings with character n-grams, the real
gain is seen in morphologically rich languages, such as Czech and Russian, for which
performance of the model increased with the addition of subword information. There
is also a slight gain for languages such as Spanish and French. A study conducted

22 CHAPTER 1. WORD EMBEDDINGS

by Mikolov et al. (2018) shows that fastText outperforms GloVe word vectors on the
Word Analogy, Rare Word and Squad data sets when trained on comparable text data
sets (Figure 1.4).

1.4 Summary

In this section, we have seen that word embeddings were first built in compu-
tational linguistics and called distributional semantic models. Count-based models
were created by counting the co-occurrences of a given word in a corpus, and then
optimising the vectors through re-weighting schemes and vector reduction methods.
Predictive models use a shallow neural network architecture to smooth out these
two steps into one, the weights being calculated directly in the projection layer so
as to maximise the probability of a word given a certain context (CBOW) or the
probability of surrounding words given an input word (skip-gram).

Having learned about the history of word embeddings as well as the main types
of models and algorithms used to produce them, how are the word embedding
spaces generated by these different algorithms evaluated? One popular met-
ric is the word analogy task.

C
H

A
P

T
E

R

2
ANALOGY RESOLUTION

Contents
2.1 Introduction . 23
2.2 Analogy test sets . 24

2.2.1 SemEval-2012 (Jurgens et al., 2012) 24

2.2.2 Microsoft Research (Mikolov, Yih, & Zweig, 2013) 25

2.2.3 Google (Mikolov, Chen, et al., 2013) 26

2.2.4 BATS (Gladkova et al., 2016) 26

2.3 Methods for solving analogies . 27
2.3.1 Pair-based methods . 27

2.3.2 Set-based methods . 29

2.4 Summary . 31
2.5 Results . 32

2.5.1 Linzen (2016) . 32

2.5.2 Drozd et al. (2016) . 32

2.5.3 Finley, Farmer, et Pakhomov (2017) 34

2.6 Summary . 36

2.1 Introduction

Now that we are familiar with word embeddings and how they are generated us-
ing different methods, we will examine the ways in which we can evaluate them. The
initial goal of word embedding evaluation was to ensure that they were calculated
correctly during training of the model. In Mikolov’s terms: we want the word embed-
dings to not only represent similarities between words, but also different types of sim-
ilarities between words. For instance, the word embeddings should somehow encode
the relationship between Paris and France—Paris being the capital of France—but
also the relationship between Paris and Prague, as they are both European capitals.

This is shown in Figure 2.1, where in the left panel we see vector offsets capturing
the male-female relation, and in the right panel we see how multiple relations can

24 CHAPTER 2. ANALOGY RESOLUTION

Figure 2.1 – Multiple relations can be embedded for a single word in a high-
dimensional vector space (Mikolov, Yih, & Zweig, 2013)

be embedded in the vector for a single word. In this case, the projection shows the
male-female relation as well as the singular-plural relation.

To illustrate this, the traditional example in the field is to show that gender infor-
mation is encoded in the vector space, as performing vector arithmetic on the vectors
of king, man and woman results in a vector very close to queen. If the vector of a
word i is denoted by xi, this relationship can be formulated as follows:

xking − xman + xwoman ≈ xqueen

In natural language, the analogy xman : xking :: xwoman : xqueen can be expressed as
"man is to king as woman is to queen".

In comes the word analogy resolution task, the most commonly used metric to
evaluate word embeddings. Several test sets have been developed to this end, and
experiments conducted to compare word embeddings produced by different models,
or by the same model but with varying hyperparameter settings. In this section,
we will first present a few analogy test sets currently available. Next, we briefly
outline the word analogy task for word embeddings, and proceed to examine the most
successful methods for analogy resolution and the results of recent studies comparing
these methods. Finally, we will discuss potential issues with the word analogy task
and its widespread use as a generic evaluation metric for word embeddings.

2.2 Analogy test sets

2.2.1 SemEval-2012 (Jurgens et al., 2012)

The SemEval-2012 analogy test set is pulled from data from the relational simi-
larity task in SemEval-2012, which included relations between word pairs targeting
a large number of semantic relationships. It contains 79 fine-grained word relations,

2.2. ANALOGY TEST SETS 25

Figure 2.2 – Example test set patterns of the SemEval-2012 Task 2 (Jurgens et al.,
2012)

such as class–inclusion, part–whole and cause–purpose. Figure 2.2 shows some ex-
amples of relations and responses generated by participants in the task.

2.2.2 Microsoft Research (Mikolov, Yih, & Zweig, 2013)

Created by Mikolov, Yih, et Zweig (2013), this is one of the first analogy test sets.
It contains analogy questions in the form "a is to b as c is to ___". It is a purely syntac-
tic test set, and the syntactic regularities that it aims to test are shown in Figure 2.3.
For each pattern, the word pairs appear in both orders in the test set, meaning that if
the test set contains "see:saw::return:___", it will also contain "saw:see::returned:___".

Figure 2.3 – Test set patterns of the Microsoft Research analogy test set (Mikolov,
Yih, & Zweig, 2013)

26 CHAPTER 2. ANALOGY RESOLUTION

Figure 2.4 – Categories and examples of the Google analogy test set (Mikolov, Chen,
et al., 2013)

2.2.3 Google (Mikolov, Chen, et al., 2013)

This test set is comprised of 9 categories of syntactic questions and 5 categories of
semantic questions, shown in Figure 2.4 alongside two examples from each of these
categories. Each category is made up of 20–70 unique word pairs. This adds up to
10,675 syntactic questions and 8,869 semantic questions. The Google analogy test set
contains only single token words, meaning multi-word entities such as San Francisco
are not included.

2.2.4 BATS (Gladkova et al., 2016)

This test set was developed by Gladkova et al. (2016) in an aim to create a more
balanced analogy test set. The Bigger Analogy Test Set (BATS) is made up of 99,200
questions in total, across 40 semantic and morphological categories. The creators
of BATS argue that existing test sets focus only on one category or are unbalanced.
Indeed, the SemEval-2012 analogy test set contains only semantic questions, the
Microsoft Research analogy test set contains only morphological questions, and the
Google analogy test set contains 9 morphological and 5 semantic categories, with
anything from 20 to 70 word pairs per category.

Due to the lack of uniformity across different analogy test sets, the creators point
out the importance of reporting results on all categories and relations, and not only

2.3. METHODS FOR SOLVING ANALOGIES 27

the average accuracy of a model. This, however, is not common practice in the field,
hence the importance of a balanced analogy test set such as BATS, which includes 40
linguistic relations as shown in Figure 2.5.

2.3 Methods for solving analogies

In natural language processing, the term analogy relationship between words
is used to refer to any type of similarity shared by two pairs of words. This means
that we are not exclusively referring to semantic traits shared by pairs of words,
but also morphosyntactic ones. For example, "Berlin is to Germany as Paris is to
France" holds as a proportional analogy just as much as "table is to tables as flower
is to flowers" does. An analogy relationship between two word pairs can thus be
formulated in the following way: a:a*::b:b*, and the goal of the analogy resolution
task is to find b*.

Two main approaches exist for analogy resolution methods. One approach is the
pair-based method that, given a:a*::b:?, aims to find b*. In other terms, given a pair
of words a and a* representing a certain relation, and the b word of the second pair,
the goal is to correctly determine b*, in that b:b* share the same relation as a:a*.

The second school of methods follows the set-based approach to analogy resolu-
tion. These methods capitalise on the generalisation of a target relation, meaning
that instead of representing the relation with a single pair of words, the relation is
represented with a set of pairs, known as the training set. So, given a set of pairs that
share the relation shown by a:a*, the goal is to find b* in b:b* where b and b* share
the same relation as the pairs in the training set. It is important to note that the b:b*
pairs in the test set, the ones we are trying to solve for, are obviously not included in
the training set for the relation.

2.3.1 Pair-based methods

3COSADD

Interestingly, the fact that word embeddings generated by a neural network even
encoded these linguistic similarities in the first place came somewhat as a surprise
to the researchers. Mikolov, Yih, et Zweig (2013) found that neural word embeddings
encoded meaningful syntactic and semantic regularities between words of a corpus,
and that this vector relation could be characterised by a relation-specific vector offset.
For a:a*, the vector offset is their difference: xa∗ − xa

For instance, the relation between a word’s singular and plural form can be de-
fined by constant vector offsets between pairs of words. This means that xsocks −

28 CHAPTER 2. ANALOGY RESOLUTION

Figure 2.5 – Categories and examples of the Bigger Analogy Test Set (Gladkova et
al., 2016)

2.3. METHODS FOR SOLVING ANALOGIES 29

xsock ≈ xgirls − xgirl, xapples − xapple ≈ xgirls − xgirl, and so on. This linear vector offset
method to analogy resolution is known as 3COSADD.

Before applying the 3COSADD method, vector normalisation is performed—a
common preprocessing step in machine learning. In this case, the vectors are nor-
malised to unit norm which means that the sum of the square of each element of the
normalised vector would equal 1. This type of normalisation produces a vector that
is also—besides unit norm—often referred to as a unit vector or vector of length 1.

Given the analogy relationship a:a*::b:b*, we first find the corresponding embed-
ding vectors xa, xa∗ , xb and then solve for b* by computing y = xa∗ − xa + xb. Since it
is possible that no word exists at exactly y, we use cosine similarity to find the em-
bedding vector that has the largest similarity to y and output that vector. This can
be summed up by the following equation:

x∗ = argmax
x′ /∈{a,a∗,b}

cos(x′, a∗ − a + b) (2.1)

where
cos(v, w) = v · w

‖v‖‖w‖
(2.2)

3COSMUL

The 3COSMUL method was proposed by Levy et Goldberg (2014) in which they
show that the 3COSADD method is equivalent to adding and subtracting cosine sim-
ilarities. They propose replacing the addition and subtraction operations with multi-
plication and division of similarities.

x∗ = argmax
x′ /∈{a,a∗,b}

cos(x′, a∗) cos(x′, b)
cos(x′, a) (2.3)

ONLY-B

Linzen (2016) discusses various methods for analogy resolution and tests them
all on the same vector space in order to correctly compare their performance. One
noteworthy method tested in the paper is ONLY-B, which reaches an accuracy score
of 0.70 in the singular-plural category. Illustrated in Figure 2.6, this method simply
returns the nearest neighbour of b, ignoring both a and a*.

x∗ = argmax
x′ /∈{a,a∗,b}

cos(x′, b) (2.4)

2.3.2 Set-based methods

Drozd et al. (2016) showed that the issue with using 3COSADD to solve word
analogy problems is its sensibility to word idiosyncrasy, and that we could improve
accuracy by averaging over multiple word pairs to capture a certain relation. The

30 CHAPTER 2. ANALOGY RESOLUTION

Figure 2.6 – When offsets are inconsistent or small, b* may still be correctly returned
if it is close to b (Linzen, 2016)

study also improves accuracy by 30% over the state-of-the-art by multiplying cosine
similarity to a source word vector with logistic regression to determine to what extent
the candidate answer belongs to the correct word class. These two new methods have
been called 3COSAVG and LRCOS, respectively.

3COSAVG

As previously stated, being based on a sole pair of words makes 3COSADD overly
sensitive to noise and differences between words, which can be highlighted through
polysemy networks. In the king:man::queen:woman example, Queen is also a musical
group, which means it appears in many contexts king does not appear in. Further-
more, the gender characteristic may not be the only distinctive feature between them,
depending on the corpus of text data used to generate the word embeddings.

To solve this problem, Drozd et al. (2016) propose 3COSAVG, which learns the
target relation from multiple word pairs instead of a single word pair. In this method,
a list of word pairs representing the relation we wish to capture is divided into a
training set and a test set, and we use the pairs in the training set to learn the target
relation. This is what the authors call a "naive approach" because it is simply the
average of the offsets between all pairs of the training set:

argmax
b∗∈V

(sim(b∗, b + AV G)) (2.5)

2.4. SUMMARY 31

where AV G represents the average offset of all pairs in the training set:

AV G =
∑m

i=0 ai

m
−

∑n
i=0 bi

n
(2.6)

and ai and bi represent words from source and target classes.

LRCOS

The LRCOS method (Drozd et al., 2016) combines cosine similarity between vec-
tor a and vector b* with logistic regression to estimate the degree to which the candi-
date answer b* belongs to the target class. For example, if we were trying to find the
capital of a country, the target class would be capitals. With regard to the logistic re-
gression parameters, the positive samples consisted of the available target words in
the training set for that relation. The negative samples were simply random words
pulled from the dictionary, equal to the number of positive samples. During their
tests, when it came to parameters such as the number of random words chosen as
negative samples or regularisation strength, no set of parameters yielded significant
gains over the default choice.

In brief, LRCOS calculates the probability of a word being the correct answer
in a given analogy problem through multiplying the cosine similarity of vector
b* with vector a and the probability of the word represented by vector b*
belonging to the target class, estimated using logistic regression.

2.4 Summary

So far, we have presented four different analogy test sets commonly used in stud-
ies testing and comparing the performance of different word vector spaces. They are
the SemEval-2012 test set, the Microsoft Research test set, the Google test set, and
The Bigger Analogy Test Set (BATS). The first is purely semantic, the second purely
morphosyntactic, the third an uneven mix of both, and the fourth a balanced test set
with both semantic and morphosyntactic categories.

Methods for solving analogy questions can be divided into pair-based meth-
ods—which learn the relation based on a single pair of words—and set-based meth-
ods—which learn the relation over a set of pairs representing it. Examples of pair-
based methods are 3COSADD and 3COSMUL, and examples of set-based methods are
3COSAVG and LRCOS.

In the next section, we will thoroughly compare performance of these analogy
resolution methods on different analogy tests sets. We will also study how accuracy
is affected by the choice of algorithm and the parameters used to generate the word
embeddings.

32 CHAPTER 2. ANALOGY RESOLUTION

2.5 Results

2.5.1 Linzen (2016)

Linzen (2016) compared performance of vector spaces generated using different
context window sizes on the analogy resolution task. Besides this difference in win-
dow size, all models were trained using the word2vec skip-gram with negative sam-
pling (SGNS) algorithm on a concatenation of ukWaC (Baroni, Bernardini, Ferraresi,
& Zanchetta, 2009) and a 2013 dump of English Wikipedia. Results show a slight ad-
vantage for 3COSMUL over 3COSADD—in line with the results of Levy et Goldberg
(2014)—and very high accuracy for ONLY-B in the plurals category.

The latter can be explained by the fact that the vector of the plural form is usually
one of the nearest neighbours to the vector of the singular form since they frequently
appear in similar contexts. Also, Linzen states that a context window of size 10
yields better results in some world-knowledge categories: 0.68 versus 0.42 for window
of size 2 in the US cities category, as shown in Figure 2.7. Smaller window sizes
therefore tend to be more adapted for capturing syntactic information, and larger
ones for semantic information—this is consistent with previous studies (Redington,
Chater, & Finch, 1998 ; Sahlgren, 2006).

This brings us to an important point that Linzen makes: word vector spaces may
seem to perform similarly with regard to average accuracy, but a closer look at perfor-
mance on different categories shows us that results vary across categories for differ-
ent vector spaces. This is why we must consider the downstream task when selecting
model parameters—smaller context windows for formal linguistic properties, larger
context windows for semantic properties.

2.5.2 Drozd et al. (2016)

In Figure 2.8, overall results show that LRCOS outperforms 3COSADD and
3COSAVG, but accuracy varies across different relations and models. That being
said, 3COSAVG yields better results than LRCOS when using the skip-gram archi-
tecture. Meanall is the average accuracy in the total data set, Meanrel is the average
score between the 14 different categories and SD is the standard deviation between
categories. Usually, other studies only report the Meanall value; the numbers show
that Meanall is generally higher than Meanrel. Since the evaluation was conducted on
the Google analogy test set, this sheds some light on the effect that the unbalanced
nature of this test set can have on results. For a more truthful depiction of model
accuracy, results should henceforth be reported per category and not over the whole
test set.

As mentioned in Section 2.2.4, BATS was developed to provide a solution to the
problem of unbalanced test sets. Performance on the analogy resolution task drops

2.5. RESULTS 33

Figure 2.7 – Breakdown of results by category across different context window sizes
(Linzen, 2016)

34 CHAPTER 2. ANALOGY RESOLUTION

Figure 2.8 – Results on the Google analogy test set (Drozd et al., 2016)

significantly on this test set, due to low accuracy in the derivational and lexicographic
categories. Figure 2.9 shows the results of the study on this test set, for 3COSADD,
3COSAVG and LRCOS on an SVD-based explicit model weighted using PPMI and a
GloVe model. Both word embedding spaces were computed with a window size of 8
and dimensionality of 300.

In Figure 2.9, the count-based SVD model shows poorer performance on the in-
flectional morphology category than the GloVe model, which is why it gained more
accuracy from LRCOS. That being said, the benefit of LRCOS was smaller on the
overall better performing predictive models such as GloVe and word2vec, and it very
rarely surpasses 3COSADD in categories where 3COSADD already achieved
near 80% accuracy.

The authors also evaluated performance using models computed with dimension-
ality greater than 300—up to 1000 for implicit models and 1200 for explicit mod-
els—and observe that higher dimensionality does not lead to higher accuracy for the
analogy resolution task. Their hypothesis is that once the core aspects of an analogi-
cal relation have been encoded in the vectors, adding more dimensions only increases
noise: for most categories, increased dimensionality did not lead to improvement of
results, but sometimes a slight degradation.

2.5.3 Finley et al. (2017)

This study focuses more on what the results obtained when performing the anal-
ogy resolution task on word embeddings can tell us about the compositionality of
word vectors.

Their test set is composed of analogy questions aggregated from the four differ-
ent analogy test sets that we presented in Section 2.2, and their best performing
word vectors were generated using the word2vec CBOW architecture (window size
8, dimension size 200) on a 2015 dump of English Wikipedia. Both 3COSADD and
3COSMUL were tested, but only results for the former are presented due to very
similar performance. As a mesure, reciprocal rank of gain (RGG) is used instead of
accuracy, which is considered too coarse of a evaluation metric.

In the case of named entities, high RGG is shown, especially in categories dealing
with capitals. On the other hand, mixed results are reported for the derivational mor-

2.5. RESULTS 35

Figure 2.9 – Performance of 3COSADD, 3COSAVG and LRCOS on BATS (Drozd et al.,
2016)

36 CHAPTER 2. ANALOGY RESOLUTION

phology category, and ever poorer results for lexical semantics—with the exception
of male-female analogies which performed rather well in this category. The authors
draw from linguistic theory in an attempt to explain the variations in accuracy across
analogy categories, a novel approach.

Semantics

Results are superior for categories containing named entities than other lexi-
cal categories such as common nouns or verbs. This is especially true when both
the pair’s words are named entities, which means that performance in the country-
capitals category is especially good. This may be explained by Montague semantics, a
theory of natural language semantics and of its relation with syntax (Janssen, 2017).

Montagovian set-theoretic semantics create a distinction between words of type e
and words of type < e, t > in the following manner:

— arguments of type e: proper nouns, denote individuals
— predicates of type < e, t >: verbs and common nouns, denote sets of individ-

uals

The interpretation is that named entities point to a sole real-world referent: there is
only one Paris. By contrast, a set of real-word referents exists for common nouns such
as cat. Consequently, the contexts in which cat appears in are vastly more diverse
than for a proper noun such as Paris. This may lead to more precise computation of
vector representations of proper nouns.

2.6 Summary

In this chapter, we provided a thorough presentation and analysis of different
analogy test sets, methods for solving analogies, and results of different analogy res-
olution experiments. The most important conclusion that we can draw from these
results is that there is interaction between three factors: the parameters chosen to
generate a vector space, the categories of word relations tested, and the methods used
for solving these analogies.

For example, Drozd et al. (2016) show that the SVD model reaches state-of-the-art
performance with LRCOS, which indicates that the relation information was in fact
encoded in the embedding space. This attributes the poor performance of count-based
models in previous studies to inappropriate choices of analogy resolution methods. It
is thus possible that poor performance using one method could be improved using a
different method on the same vector space.

Since the results demonstrate variation across categories, methods and vector
spaces, selection of resolution methods and model parameters should be carefully
based on the downstream task at hand. If several different categories of relations

2.6. SUMMARY 37

are involved in the task, we may consider using separate vector spaces trained on
different text data with various parameter settings. Future work could also focus
on optimising methods for analogy resolution of specific categories, with respect to
properties of each category and vector space. That being said, the heterogeneity of
results across analogy resolution experiments suggests that the word analogy resolu-
tion task is better suited as a means of exploration of a word embedding space, rather
than an evaluation.

Part II

Ideation

C
H

A
P

T
E

R

3
PEPPER THE ROBOT

Contents
3.1 Introduction . 41

3.2 Pepper’s Dialogue Engine . 41

3.2.1 qiChat . 42

3.2.2 Pattern Matching . 43

3.2.3 Knowledge . 43

3.3 Human-Robot Interaction . 44

3.4 Summary . 44

3.1 Introduction

We had the opportunity to work with a humanoid robot created by Softbank
Robotics, Pepper. Pepper the Robot was created with the main purpose of social in-
teraction with humans in mind: to serve as a companion robot inside people’s homes,
to help the elderly, assist and watch over the young, and to entertain people. How-
ever, most Peppers in the world today are deployed in business-to-business (B2B)
contexts, such as commercial stores. This is partly due to the difficulty Pepper has
when conversing with a human, regardless of the age of the person or the domain of
the conversation.

In this section, we will outline the current state of Pepper’s dialogue engine, and
discuss the effect that Pepper’s humanoid form has on interaction with humans.

3.2 Pepper’s Dialogue Engine

Pepper’s dialogue engine is based exclusively on rule-based methods. This means
that Pepper has a database of rules that map human input sequences to robot re-
sponse sequences. Let us break down this process.

42 CHAPTER 3. PEPPER THE ROBOT

3.2.1 qiChat

First of all, these rules are written in a scripting language—qiChat—developed
by the Dialog team of Softbank Robotics Europe (SBRE). qiChat was inspired by
ChatScript, which was used to create the chatbot that won the 2010 Loebner Prize,
an annual competition that recompenses chatbots considered to be most human-like
by the judges. The rules are organised by topic, divided by the subject matter. For
example, a topic called Hello or Goodnight would deal with salutations, whereas a
topic called Robot Capacity would include rules about what Pepper can and cannot
do. 1

To better visualise the way qiChat works, below are two examples of rules written
in qiChat:

#rule: hello#

u:(_[hello howdy hiya hi greetings aloha "hey there" "salutations

$salutations=true"])

^first[

"$greeting==done ^enableThenGoto(hello_again)"

"$salutations==true salutations ^clear(salutations) $greeting=done"

"^rand[$1 hello howdy hiya hi greetings aloha "hey there"]

$greeting=done"

]

#rule: hello_again#

u:(^empty) %hello_again

[

"Hello again"

"You’ve already said hello! But I appreciate it!"

"You really like greetings! That’s nice of you!

^rand[hello howdy hiya hi salutations aloha "hey {there}"]"

]

The u: keyword is used before a human input pattern. Square brackets are used
to hold different possibilities and will match one of the elements contained within
them. They can be interpreted as an or operator. In the first rule: hello or howdy or
hiya and so on.

We can create and reference variables using $ followed by the variable name, and
use them to store states and control the flow of the dialogue. In the above examples,
$greeting is used to store information about whether or not the human has already

1. for more information on qiChat, consult the official documentation at
https://android.aldebaran.com/sdk/doc/pepper-sdk/ch4_api/conversation/qichat/qichat_index.html

3.2. PEPPER’S DIALOGUE ENGINE 43

greeted the robot, and adapts the robot’s response accordingly. Variables can also be
used to force a specific robot output given a specific human input, as shown with the
$salutations variable above.

Bookmarks, denoted by %, are another way of controlling the flow of dialogue.
The keywords ^first and ^rand are used to control the way the robot chooses a
response. In the former, the robot’s text to speech (TTS) system outputs the first
response that satisfies all conditions, whereas in the latter the robot response will be
chosen at random among the given output patterns.

3.2.2 Pattern Matching

When Pepper detects speech, its automatic speech recognition (ASR) system con-
verts the spoken language information into text. Given this input string, the dialogue
engine searches for a match among the human input sequences available in Pepper’s
database of topics written in qiChat. If a rule is matched, the robot output sequences
in that rule determine Pepper’s response. This is not a fail-safe method, as the ASR
result can be erroneous, or there may be no existing rule that matches the input
string.

This second issue has always been a known setback of purely rule-based dialogue
systems. For closed-domain dialogue systems, a rule-based approach is feasible as the
domain is restricted. For instance, Pepper can be deployed by businesses because the
dialogue content that needs to be created is specific to a predefined use case, which
makes the task of creating rules for this particular scenario possible. However, for
an open-domain dialogue system—which Pepper, being a social robot, should be—a
purely rule-based approach is impossible. No number of writers or automatisation
would ever be able to accomplish this task, as a defining feature at the core of human
language is its infinite number of possible combinations.

3.2.3 Knowledge

When it comes to storing and accessing information, Pepper is equipped with a
triple-based knowledge representation system. In practice, its main purpose is to
allow the robot to store information about the user, such as their name and certain
preferences. In theory, we could enrich this knowledge base with any information in
triple form and create an inference system in order for the robot to be able to exploit
this information during dialogue. This is nonetheless a rather static approach, in
that the knowledge base would have to be engineered by a human expert and would
eventually become too costly to maintain and develop manually.

44 CHAPTER 3. PEPPER THE ROBOT

3.3 Human-Robot Interaction

A particularity that Pepper possesses which differentiates it from other dialogue
systems is obviously its humanoid form. This changes the circumstances of interac-
tion, most importantly by creating expectations for the robot’s behaviour. Humans
interacting with a humanoid robot tend to project expectations for the robot to be
the most human-like possible. This means that a human interacting with Pepper,
especially for the first time, may have a tendency to speak to it exactly as they would
speak to another human. Alas, a robot does not understand human language.

Let us use an example to illustrate the effect of these expectations. The ASR
result is the first step, or obstacle, in human-robot interaction. To favour success,
the human must articulate well and speak at a moderate pace. Furthermore, if the
human makes mistakes, false starts, uses filler words, or if their speech contains
any other disfluency, this will create complications. These speech disfluencies are an
intrinsic part of spontaneously uttered speech (Corley & Stewart, 2008 ; Lickley &
Bard, 1998). It is therefore not natural to erase these phenomena from our speech
during verbal interaction with a robot. That being said, perhaps human-robot in-
teraction will one day lead to the evolution of a new language form specific to this
type of interaction, brought forth by the rising necessity for humans to communicate
efficiently with machines.

3.4 Summary

In this third chapter, we provided a brief introduction to Pepper the Robot, as
well as its dialogue and knowledge engines. We have seen that its dialogue engine
is a purely rule-based one, and that its knowledge engine is essentially a knowledge
base containing triples that we can manipulate when creating dialogue content.
Both of these approaches are primarily suited to closed-domain dialogue systems, as
they are too costly or even impossible to develop and maintain on a regular basis for
an open-domain dialogue system.

Herein lies the inspiration for the experiment conducted in this study.

C
H

A
P

T
E

R

4
BOUNCING BACK WITH WORD

EMBEDDINGS

Contents
4.1 Introduction . 45

4.2 Potential Advantages . 46

4.3 Potential Disadvantages . 47

4.4 Summary . 49

4.1 Introduction

As seen in Part 1, word embeddings generated by neural networks do indeed
seem to be capable of encoding linguistic regularities within their word vectors.
The question we aim to explore by conducting this experiment is the following: to
what extent can we exploit the characteristic of neural word embeddings
being able to capture semantic and morphosyntactic regularities as a way to
generate responses in a dialogue system? Additionally, what are some potential
advantages and disadvantages of such an approach?

Before investigating the second question, let us explain how the idea in the first
question came about. The initial hurdle we were trying to overcome was being able to
spontaneously generate a response in cases of unmatched input sequences. Our core
inspiration comes from verbal interaction situations in which one of the interlocu-
tors does not have something to say, but merely wishes to provide a response so as
to keep the interaction going. Through simulation scenarios and the analysis of dia-
logue corpora, we concluded that humans tend to fall back on elements from previous
utterances in order to produce a novel utterance. In other words:

1. we can select certain parts—such as a noun phrase—from the previous utter-
ance, and produce a new utterance pertaining to or containing these parts

46 CHAPTER 4. BOUNCING BACK WITH WORD EMBEDDINGS

2. we can select certain parts and then use mental association to come up with a
new phrase around which we construct our new utterance

We call this mechanism "bouncing", as we are using the previous utterance as a
trampoline to our new utterance. In more formal terms, the parts that we select in
the previous utterance are generally noun phrases, and mental association refers to
some type of relation that links the first noun phrase to the second, most likely a
semantic one.

speaker1: croissants in france are so yummy right

speaker2: yeah i mean their pastries are heavenly

speaker1: true i ate way too much brioche this weekend

speaker2: i drank too much ha ha

In the above example, we spot semantic links between two groups of words, the
words in orange and the words in purple. Concerning the words in orange, we go
from croissants to pastries, its hyperonym. We then go from the hypernym back
to another hyponym, brioche. This relation of hypernym and co-hyponyms creates
a meaning relation between the utterances, and establishes a sense of relevance
throughout the interaction. Thus, examining these relations may be able to provide
us with a phrase-generating mechanism based on bouncing off an element of the
previous utterance in order to produce a new utterance that would remain pertinent
in the context of the dialogue.

So, seeing as neural word embeddings encode semantic and morphosyntactic infor-
mation within their vectors, could we use these word embeddings as a base for con-
cept association based on semantic relationships?

4.2 Potential Advantages

The most striking benefit of using such a tool is the fact that neural network mod-
els such as word2vec can be trained on unannotated text data. Reducing the need for
manual or semi-manual annotation would therefore be favourable, as annotation can
be a relatively costly task in a data pipeline containing natural language processing.

That being said, simply because no human annotation is required does not
mean that word2vec is a truly unsupervised machine learning algorithm. Neural
networks work by backpropagating error, and calculating error requires labelled
data. word2vec includes a preprocessing step that creates its own labels and then
trains the network and generates embeddings. Consider the following example:

4.3. POTENTIAL DISADVANTAGES 47

the cat in the hat

-- (the, cat)

-- (cat, the), (cat, in)

-- (in, cat), (in, the)

-- (the, in) (the, hat)

-- (hat, the)

Given the input text, the network makes data pairs based on the window size.
Here, the window size is 1, so for each word the network considers one word from
history and one from future. Thus it creates labels and trains the network. This
is a particular instance of supervised learning called semi-supervised learning, in
which the targets are generated from the input data. No human expert is needed for
making the labels.

Word embeddings can be said to be dynamic, as training the same model on differ-
ent corpora would produce different results. This is to say that the compositionality
of the computed word vectors would not be identical if the same model was separately
trained on a Wikipedia corpus and on a literary corpus. The choice of corpus would
then depend on specifics of the downstream task at hand—in this case, the purpose
of the dialogue system, its domain, or even its personality.

Finally, it has been shown that word embeddings encode information about lin-
guistic relations in their word vectors. This is a helpful trait for our experiment as
our aim is to use mainly semantic relations to bounce from one concept to another,
and then build a phrase around that concept. In theory, a structured lexicon created
by humans, such as WordNet (Miller, 1995), would fit the goal of our dialogue sys-
tem. However, experimentality is at the core of this work, hence the choice of using
of a semi-supervised machine learning algorithm to create this concept association
mechanism in our dialogue system.

4.3 Potential Disadvantages

The fact that word2vec is a semi-supervised learning algorithm is a double-edged
sword. On one hand, it allows us to do without the need of human annotation of the
training data, as the neural network creates its own labels through backpropagation.
On the other hand, this also implies that we relinquish control and the ability to
ensure the generated word embeddings follow a certain structure or contain specific
information. Faruqui et al. (2014) show that it is indeed possible to retrofit word
vectors with information from semantic lexicons, and this could perhaps be explored
in the future for a domain-specific dialogue system. For now, the aim of this study is

48 CHAPTER 4. BOUNCING BACK WITH WORD EMBEDDINGS

Figure 4.1 – Two-dimensional PCA projection of countries and their capital cities
(Mikolov, Sutskever, et al., 2013)

to conduct this initial experiment and see how word embeddings can be used as a cog
of a natural language generation mechanism in a dialogue system.

This also means that since the creation of the word embeddings is a semi-
supervised task, the composition of the word vectors remains somewhat of a mystery
to us, at least at the beginning. We could begin to familiarise ourselves with the com-
positionality of a word vector space using visualisation methods such as principal
component analysis (PCA) (Pearson, 1901) and t-Distributed Stochastic Neighbour
Embedding (t-SNE) (van der Maaten & Hinton, 2008). In Figure 4.1, PCA is used
to visualise skip-gram vectors with 1000 dimensions in a two-dimensional space. We
observe the constant relation offset between countries and their capital cities, ex-
hibiting how the model implicitly learns relationships between concepts after auto-
matically organising them during training. No information about what a capital city
means was provided to the model during training.

Since both PCA and t-SNE are based on dimensionality reduction, the tradeoff
when employing these methods is that we lose a significant amount of the informa-
tion generated by the neural network. We recommend coupling such visualisation
methods with approaches similar to Finley et al. (2017), based on drawing from lin-
guistics to explain variations in performance across categories of semantic, syntactic,
and morphological properties on the analogy resolution task.

4.4. SUMMARY 49

To conclude, as the Part 1 has shown us, word embeddings are far from achiev-
ing perfect accuracy on all the word analogy categories, which would be an obvious
issue for dialogue systems in production. That being said, word embeddings yield
consistently good results on certain categories such as the country-capital one and
the singular-plural one. As a start, we could focus on these categories in order to
ensure good overall accuracy of the systems, but this is rather restrictive, and results
still do not show perfect accuracy.

4.4 Summary

In this section, we presented our hypothesis for why word embeddings could be a
way to recreate, in a dialogue system, the concept association mechanism in human
verbal interaction. We also went through the potential advantages and disadvan-
tages of this method. In the next section, we will present the steps we undertook in
the creation of our dialogue system.

Part III

Implementation

C
H

A
P

T
E

R

5
DIALOGUE SYSTEM

Contents
5.1 Introduction . 53
5.2 A Simple Dialogue System . 53
5.3 Word Vector Space . 54

5.3.1 Corpus . 54
5.3.2 Gensim and word2vec . 56
5.3.3 Vector Space Exploration . 57

5.4 Response Generation . 59
5.4.1 n-grams . 59
5.4.2 Markov Text . 59

5.5 Results . 60
5.6 Summary . 61

5.1 Introduction

This chapter will present the different components of our generative dialogue sys-
tem and the steps taken to build them. The first step was the creation of a basic dia-
logue system inside of which we integrate our response mechanism. Next, we present
the corpus and model we used to compute our word embeddings. Finally, we will go
through how we generated responses using Markov chains.

5.2 A Simple Dialogue System

First of all, we need some kind of structure to house our experiment—a skeleton, if
you will. For this purpose, we create a simple interface using Python. When we enter
a human input, the first step is to process this input by means of natural language
understanding techniques. We use the spaCy NLP library for this.

Upon receiving a valid human input, we annotate the text data with linguistic
information. The tags that will primarily be useful to us in this study are the part-
of-speech (POS) tags. We also perform a dependency parse of the input sentence.

54 CHAPTER 5. DIALOGUE SYSTEM

We extract tokens from the human input that are either common or proper nouns,
denoted respectively by the POS tags NOUN and PROPN. If a noun shares a dependency
with another element of the sentence, such as being a prepositional object, we extract
the other noun in the relation. We sometimes extract the root verb of the human input
sentence.

The reason we extract these elements from the human input is so they may serve
in the next step, during which we access a word embedding model and search for the
most similar terms given one or several words. Other inputs that may fall into broad
categories, such as the greetings category, are dealt with using pattern-matching
rules that we created for our dialogue system. This means that our system is a hy-
brid one, as it employs both retrieval-based methods and generative-based methods
in providing a response.

5.3 Word Vector Space

One constraint that we note at this point is that the words must exist in the
vocabulary of our word embedding model for there to be a match. Consequently, since
our dialogue system is open-domain, it would be beneficial to use word embeddings
generated by training on a rather large data set of generalist text. Also, in order
to increase accuracy, higher dimensionality is recommended. We will address these
issues in this section.

5.3.1 Corpus

Reddit is an American discussion website founded in June 2005 by Steve Huffman
and Alexis Ohanian. It can be described as a hybrid social network and forum for
sharing and discussing news and web content, and asking and answering questions
on a vast variety of subjects. These topics are organised by boards called subreddits,
created and maintained by the users, called redditors. In February 2018, Reddit
occupied 3rd position in a ranking of most viewed websites in the United States,
and 6th position worldwide, as reported by Alexa Internet, a web traffic analysis
company. 1

Here are some statistics on Reddit in 2015, taken from the official Reddit blog 2:
— 82.54 billion pageviews
— 73.15 million submissions
— 725.85 million comments:

— made by 8.7 million total authors
— containing 19.36 billion words

1. https://www.alexa.com/siteinfo/reddit.com
2. https://redditblog.com/2015/12/31/reddit-in-2015/

5.3. WORD VECTOR SPACE 55

— 6.89 billion upvotes
— 88,700 active subreddits

The wealth of text data and large number of subjects discussed on Reddit suit
our needs perfectly. Qualitatively, we find the overall language and writing style of
redditors to be fitting; spelling, grammar and punctuation are generally of acceptable
quality, and the style is casual and usually good-spirited, even when debating. This
is why we decided to use a corpus of Reddit comments posted in January 2015 to
train our word embedding model. It is a subcorpus of a huge data set 3 comprised
of all publicly available Reddit comments, collected and made available by Jason
Baumgartner, who maintains a website dedicated to learning about big data and
social media analysis 4.

The comments were initially in JSON format and included information such as
author, subreddit, comment score, and comment body. We extracted only the com-
ment body text from the JSON objects and proceeded to preprocess the text before
feeding it into a neural network for generating word vectors. We used regular ex-
pressions to delete URL links and insert line breaks after each sentence. We also
removed HTML tags, converted all letters to lowercase and numbers to their al-
phabetical counterparts, and inserted whitespace between words and punctuation
marks. After this preprocessing step, our corpus consists of:

— 811,388,734 tokens
— 56,099,311 lines

To better visualise this, here are samples of our text data before preprocessing:

What an interesting question! I would have to say... We don’t

know. We know there are two pigments essentially a brown and

red pigment that make up hair color. I’m pretty sure that

the amount of red is controlled by 1 gene (but MANY different

alleles.) We are not sure how many genes are involved in the

amount of brown pigment. We just don’t know enough to be able

to predict offspring hair color.

Comments can be specific to a domain, or purely anecdotal:

...Drink it. Hahaha, that’s awesome. I’ve done something

similar - saw what I thought was a stooped, older gentleman on

the bus (his head was turned to the side, face partially hidden

by scraggly grey hair and a wool cap, and the skin on his hands

3. for the full corpus of 1.7 billion Reddit comments visit:
https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/

4. https://pushshift.io/

56 CHAPTER 5. DIALOGUE SYSTEM

looked pretty rough) and stood up to offer my seat. He tried

to decline (head still turned away) but I insisted. He finally

took the seat in resignation, looked up at me as he sat down

and muttered "I’m not even that old". He was probably in his

early-mid fourties.

After preprocessing, our text data looks like this:

what an interesting question !

i would have to say ...

we don’t know .

we know there are two pigments essentially a brown and red

pigment that make up hair color .

i’m pretty sure that the amount of red is controlled by one gene

(but many different alleles .)

we are not sure how many genes are involved in the amount of

brown pigment .

we just don’t know enough to be able to predict offspring hair

color .

... drink it .

hahaha , that’s awesome .

i’ve done something similar - saw what i thought was a stooped

, older gentleman on the bus (his head was turned to the side

, face partially hidden by scraggly grey hair and a wool cap ,

and the skin on his hands looked pretty rough) and stood up to

offer my seat .

he tried to decline (head still turned away) but i insisted .

he finally took the seat in resignation , looked up at me as he

sat down and muttered " i’m not even that old " .

he was probably in his early-mid fourties .

5.3.2 Gensim and word2vec

We used the Gensim Python implementation of the word2vec algorithm. Our
word vectors were computed with the following parameters:

— minimum count: 10 (only words appearing at least ten times in the corpus
are considered)

— vector dimension size: 300
— context window size: 5
— training algorithm: skip-gram

5.3. WORD VECTOR SPACE 57

— negative samples: 10
After 5 training epochs completed in around an hour and a half on our corpus of
over 800M tokens, our word vector space is generated with 300 dimensions and a
vocabulary size of 751,111 words.

5.3.3 Vector Space Exploration

Let us see if our word embeddings are able to solve some of the traditionally used
analogy examples:

REDDIT WORD VECTORS
analogy 3COSADD

man:king::woman:? queen, 0.6220933198928833
france:paris::germany:? berlin, 0.6995094418525696

oregon:portland::tucson:? arizona, 0.6880635023117065
germany:german::france:? french, 0.8510904312133789

germany:german::netherlands:? dutch, 0.7724204063415527
dancing:danced::jumping:? jumped, 0.7310522794723511

dancing:danced::flying:? flew, 0.9726194143295288
banana:bananas::bird:? birds, 0.669019341468811

bottle:bottles::car:? cars, 0.8225154876708984
japan:yen::europe:? euros, 0.6935263872146606

Table 5.1 – Results using 3COSADD to solve analogies in our vector space

REDDIT WORD VECTORS
analogy 3COSMUL

man:king::woman:? queen, 0.8622549772262573
france:paris::germany:? berlin, 0.8249755501747131

oregon:portland::tucson:? arizona, 0.8815611004829407
germany:german::france:? french, 0.970018744468689

germany:german::netherlands:? dutch, 0.9512843489646912
dancing:danced::jumping:? jumped, 0.980408787727356

dancing:danced::flying:? flew, 0.6888895034790039
banana:bananas::bird:? birds, 1.0101929903030396

bottle:bottles::car:? cars, 1.0429044961929321
japan:yen::europe:? euros, 0.8800071477890015

Table 5.2 – Results using 3COSMUL to solve analogies in our vector space

Tables 5.1 and 5.2 demonstrate our vector space’s ability to represent these re-
lations among its word vectors. Table 5.1 shows scores when using the 3COSADD

method for solving analogies, and Table 5.2 shows scores for 3COSMUL. Both meth-
ods are successful in retrieving the correct response, but 3COSMUL is more accurate,
which is why we will be employing this method in our dialogue system.

58 CHAPTER 5. DIALOGUE SYSTEM

We shall explore our word embeddings further by looking at the vectors closest to
some words:

REDDIT WORD VECTORS
word NEIGBOURHOOD

pizza

burger, 0.8053134083747864
sandwich, 0.7730149626731873
burrito, 0.7347080707550049

sushi, 0.720064103603363
chipotle, 0.7158690690994263

steak, 0.7064655423164368
cheeseburger, 0.7061429023742676

kfc, 0.7012215852737427
cheesesteak, 0.696954309940338 1

hotdog, 0.6860557794570923

Table 5.3 – Vectors closest to pizza in our vector space

REDDIT WORD VECTORS
word NEIGBOURHOOD

pants

trousers, 0.7896082401275635
undies, 0.7825345993041992
jeans, 0.7795000672340393
socks, 0.7662390470504761
shorts, 0.7512415051460266

underwear, 0.7492477893829346
sweatpants, 0.7492419481277466

boxers, 0.7377183437347412
shoes, 0.7275022864341736
shirt, 0.7163687944412231

Table 5.4 – Vectors closest to pants in our vector space

The results in Tables 5.3 and 5.4 are an indication of our model’s capacity to group
together concepts belonging to the same semantic class. In effect, when exploring the
respective neighbourhood structures of pizza and pants, we observe that the terms
nearest to them are co-hyponyms of the same class, (fast) food for the former and
clothing for the latter.

Now for something more fun. What happens when we add the vectors of cat and
cute? Red and purple? Puppy and adult?
cat + cute = kitten, 0.7406163215637207

red + blue = purple, 0.7893121242523193

puppy + adult = toddler, 0.6859981417656 ; dog, 0.6807955503464

This last example is especially interesting. By adding the vectors of puppy and adult,

5.4. RESPONSE GENERATION 59

the top result was the vector for toddler, which may mean that our model somehow
encoded the baby property in the vector for puppy and the human property in the
vector for adult. This is a possible explanation for why adding these two vectors
resulted in the vector closest to toddler, a human baby.

Now that we have generated our word embeddings, the words that we extracted from
the human input in the first step of the process are used as elements to extract new,
related terms from our word vector space.

5.4 Response Generation

In the previous step, the result was a list of words extracted from the vocabulary of
our word embedding model. Given this list of words, we aim to generate a response
to the human input. To do so, we have decided to implement a Markov chain text
generator using n-grams.

5.4.1 n-grams

The term n-gram is used to denote any sequence of n elements, where n is called
the order of the n-gram. The elements in the sequence can be letters, phonemes,
syllables; in our case they are words. n-grams can be used to build a statistical model
of text. This will help us assemble the n-grams into a Markov chain, explained in
the next section. We will be using 2-grams—or bigrams—illustrated below.

the cat in the hat

-- (the, cat)

-- (cat, in)

-- (in, the)

-- (the, hat)

5.4.2 Markov Text

First of all, a Markov process, named after the Russian mathematician Andrey
Markov, is one that exhibits the Markov property of memorylessness. If prediction for
the next step of the process can be made based solely on the state of the current step,
then the process is said to satisfy the Markov property. (Gagniuc, 2017) A Markov
chain is hence a model that describes a sequence of events in which each step depends
probabilistically only on the current state.

60 CHAPTER 5. DIALOGUE SYSTEM

A Markov chain can be used on the n-grams collected from a text corpus as a
way to generate new sequences of text. The first step of this process is to select text
data and build an n-gram dictionary. This means that for each n-gram, we record
the n-gram that follows it and create a dictionary storing this information. To better
visualise this process, imagine a tree where each word is represented by a branch.
The leaves on each branch are words that followed the branch word somewhere in
our corpus. The size of the leaf words then vary depending on the number of times
they co-occurred with our branch word.

We trained our Markov chain text generator on subsets of the 811M word Reddit
corpus. To generate a new sequence based on our collection of bigrams, we select
a start word and choose randomly among its list of subsequent bigrams, and so on,
until the maximum sentence length or an end word is reached. The results in the
next section were generated with a maximum sentence length parameter of 15. The
start words are the words retrieved from our vector space.

5.5 Results

Here are some examples of input and output sequences produced during interac-
tion with our dialogue system, named chatterbox:
human: we got pizza and ate in the yard

chatterbox: pizza boxes fell on that bench?

human: no we ate the pizzas

chatterbox: i drank all 3 in body weight and focus on the chin

human: i would rather focus on the thighs

chatterbox: concentrate more on building relationships.

concentrate more on that asap.

human: thanks for the advice i guess

human: we had a really rough night

chatterbox: morning honey, how’d you guess?

human: there were protests all over paris

chatterbox: paris catacombs left a night time shelter and

protect yourself

human: i stayed inside, i don’t think people were hiding in the

catacombs

chatterbox: caves don’t understand customer service.

human: do you mean they’re not that comfortable?

chatterbox: uncomfortable topic. uncomfortable amount of hate

and harm.

human: i understand, i don’t really like to discuss politics

5.6. SUMMARY 61

either

chatterbox: debate is encouraged for you as well!

human: maybe later

chatterbox: perhaps some variant of "the master said this:

blah blah".

human: yeah we really are like slaves

chatterbox: slavery in 1981. still 19 years ago?

human: woah i didn’t realize you were a social justice warrior

chatterbox: activism say, for example, germany.

human: what does germany have to do with anything?

chatterbox: europe their attitudes and techniques varied

drastically based on a shoestring budget.

human: ha ha i don’t know. can we talk about fashion instead?

chatterbox: fashion trends and the women you pass.

human: oh? do you follow any bloggers?

chatterbox: gurus are lacking beauty vids.

In the above excerpt, the words in boldface are the ones that were extracted from
the human input and the ones retrieved from the vector space using the human input
words. Despite some nonsensical responses and ungrammaticality, a few of the gen-
erated responses do exhibit a degree of coherence within the dialogue. Amusingly, we
notice that the context and interpretation of the generated responses somehow create
meaning for seemingly unrelated responses. Meaning is constructed throughout the
dialogue with the input and output sequences, despite the system sometimes giving
bizarre responses.

5.6 Summary

In this chapter, we described the steps taken in our creation process. First, we
made a basic dialogue system that extracts elements from the human input. We then
collected and preprocessed an 811M word corpus of Reddit comments. This corpus
was used to train a word2vec skip-gram model with 300 dimensions and a context
window size of 5. Exploration of our vector space allowed us to observe some interest-
ing properties contained within the compositionality of our word vectors. Then, given
the list of words taken from the human input, we used one or more words to extract
related terms from our vector space. Finally, to generate a response to the human,
we trained a Markov chain text generator on subsets of the Reddit corpus and fed it
the result word from our vector algebra in the previous step as the start word of the
generated sentence.

C
H

A
P

T
E

R

6
DISCUSSION

Contents
6.1 Introduction . 63

6.2 Discussion and Future Work . 63

6.3 Summary . 65

6.1 Introduction

In this final chapter, we will reflect on our experimentation process and propose
extensions and new lines of study for future work.

6.2 Discussion and Future Work

The biggest edge that using word embeddings gives us is the ability to train ef-
fectively on large quantities of unlabelled data. No lexicon or human annotation was
provided, yet our model was able to encode semantic and morphosyntactic properties
in its vectors. We were seeking these semantic classes in order to create a concept
association mechanism in our dialogue system and be able to spontaneously generate
responses based on these associations.

An ontology or a knowledge base organises words or concepts based on their de-
notation, which is viewed as a stable, invariable notion. However, the meaning of a
word is mutable and varying; it is built by the contextualisation of lexical units in a
text. This brings us back to the Distributional Hypothesis (Harris, 1954):

"linguistic terms with similar distributions have similar meanings"

The underlying idea was popularised by Firth (1957):

"you shall know a word by the company it keeps"

Using different text data and model hyperparameters when training a neural net-
work leads to the generation of different embedding spaces. This raises the question

64 CHAPTER 6. DISCUSSION

of transferability of our system: how would it function with word embeddings gener-
ated using different corpora and model settings? We may perhaps consider a corpus
to be a representation of Pepper’s semantic experience: it is Pepper’s unorganised,
experiential and phenomenological knowledge—an archive of its experiences. This
highlights the importance of the corpus as it:

— becomes a reservoir of knowledge and experiences of the world
— may have a decisive influence on the personality of the dialogue system

To test this hypothesis, we could conduct the same experiment with different
corpora in order to observe the relationship between the genre of the corpus and the
personality of the dialogue system. Would a corpus of poetry create a poetic bot?
Would a corpus of lampoons create an agressive bot?

Regarding our Markov text generator, the generated sentences were generally
pleasant and somewhat well-formed. The Reddit corpus makes for an original lan-
guage style. However, the responses it generates are not always completely gram-
matical, which would evidently pose an issue for dialogue systems in production.
Nonetheless, this is something that future work could focus on and improve, perhaps
through the integration of a phrase grammar. Also, the start word of our generated
sentence is chosen from the related word vectors of words extracted from the human
input. In order for the response to be generated successfully, the start word must be
present in the corpus used to train the Markov text model.

To increase chances of success, we trained the text generator on a subcorpus of
the corpus used to build our vector space. We also extracted a list of related word
vectors from our embedding space instead of a single one, and fed them into the
Markov text model one after the other until we were able to generate a sentence.
It is still possible that none of the extracted terms allow us to generate a sentence.
Furthermore, in our current model, the extracted term is always placed at the
beginning of the generated sentence. Perhaps we could extend our model in the
future to include a backwards n-gram text generator, where the input word is used
as the end word. Finally, our Markov text generator could be enhanced through the
addition of a fitness function that would allow us to modify features of the generated
response. For example, we could use a fitness function to reward more complex
words if we wish to give them a higher chance of appearing in the generated text, or,
inversely, reward simpler words in order to use more of them.

When considering other characteristics of our system, we currently use the 3COS-
MUL method to extract terms from our vector space when more than one element is
extracted from the human input, and return a list of nearest neighbours when a sin-
gle word was extracted from the human input. It may be interesting to experiment

6.3. SUMMARY 65

using different methods depending on the category of the extracted word. This can be
studied alongside a more in-depth exploration of the vector space in order to gain a
better understanding of its composition and the manner in which it encodes different
linguistic properties.

6.3 Summary

To summarise, we could investigate the usage of different methods for extract-
ing new terms from our vector space, based on the category of the words extracted
from the human input, for instance. We could also study the effect that using differ-
ent word vector spaces, generated using corpora from different genres, would have
on our dialogue system. The Markov chain text generator could be improved with a
grammar, a fitness function and a backwards n-gram generator. It may also be inter-
esting to train the embedding model and the text generator on different corpora and
examine the results. Lastly, robustness of the model could be increased by enabling
it to better handle out-of-vocabulary words.

CONCLUSION
The aim of this experiment was to introduce a concept association mechanism that
allows a dialogue system to generate novel responses semantically related to the in-
put it received. This was implemented using neural word embeddings, which have
shown potential by implicitly encoding linguistic properties, both semantic and mor-
phosyntactic, in the composition of their word vectors. The internal structure of vec-
tor spaces remains relatively obscure to the scientific community. As long as this
is the case, we are unable to fully exploit this powerful tool. We encourage further
study of the compositionality of vector spaces, sensitive to interplay between three
main factors: the text data set, the model parameters, and the methods used for
information extraction.

BIBLIOGRAPHY

Baroni, M., Bernardini, S., Ferraresi, A., & Zanchetta, E. (2009, 01 septembre). The
wacky wide web: a collection of very large linguistically processed web-crawled
corpora. Language Resources and Evaluation, 43(3), 209–226. Consulté sur
https://doi.org/10.1007/s10579-009-9081-4 doi: 10.1007/s10579-009
-9081-4

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! a system-
atic comparison of context-counting vs. context-predicting semantic vectors. In
Proceedings of the 52nd annual meeting of the association for computational lin-
guistics (volume 1: Long papers) (pp. 238–247). Association for Computational
Linguistics. Consulté sur http://aclweb.org/anthology/P14-1023 doi:
10.3115/v1/P14-1023

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003, mars). A neural prob-
abilistic language model. J. Mach. Learn. Res., 3, 1137–1155. Consulté sur
http://dl.acm.org/citation.cfm?id=944919.944966

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vec-
tors with subword information. CoRR, abs/1607.04606. Consulté sur http://
arxiv.org/abs/1607.04606

Brants, T., Popat, A. C., Xu, P., Och, F. J., & Dean, J. (2007). Large language models
in machine translation. In Proceedings of the 2007 joint conference on empir-
ical methods in natural language processing and computational natural lan-
guage learning (emnlp-conll). Consulté sur http://aclweb.org/anthology/
D07-1090

Collobert, R., & Weston, J. (2008). A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on machine learning (pp. 160–167). New York,
NY, USA : ACM. Consulté sur http://doi.acm.org/10.1145/1390156

.1390177 doi: 10.1145/1390156.1390177
Corley, M., & Stewart, O. W. (2008). Hesitation disfluencies in spontaneous speech:

The meaning of um. Language and Linguistics Compass, 2(4), 589–602. doi:
10.1111/j.1749-818X.2008.00068.x

Drozd, A., Gladkova, A., & Matsuoka, S. (2016). Word embeddings, analogies, and
machine learning: Beyond king - man + woman = queen. In Coling 2016, 26th
international conference on computational linguistics, proceedings of the confer-

https://doi.org/10.1007/s10579-009-9081-4
http://aclweb.org/anthology/P14-1023
http://dl.acm.org/citation.cfm?id=944919.944966
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://aclweb.org/anthology/D07-1090
http://aclweb.org/anthology/D07-1090
http://doi.acm.org/10.1145/1390156.1390177
http://doi.acm.org/10.1145/1390156.1390177

70 BIBLIOGRAPHY

ence: Technical papers, december 11-16, 2016, osaka, japan (pp. 3519–3530).
Consulté sur http://aclweb.org/anthology/C/C16/C16-1332.pdf

Dubin, D. (2004). The most influential paper gerard salton never wrote. Li-
brary Trends, 52(4), 748-764. Consulté sur http://dblp.uni-trier.de/db/
journals/libt/libt52.html#Dubin04

Evert, S. (2005). The statistics of word cooccurrences: Word pairs and collocations.
Consulté sur https://books.google.fr/books?id=Uof3tgAACAAJ

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E. H., & Smith, N. A.
(2014). Retrofitting word vectors to semantic lexicons. CoRR, abs/1411.4166.
Consulté sur http://dblp.uni-trier.de/db/journals/corr/corr1411

.html#FaruquiDJDHS14

Finley, G., Farmer, S., & Pakhomov, S. (2017). What analogies reveal about word
vectors and their compositionality. In Proceedings of the 6th joint conference
on lexical and computational semantics (*sem 2017) (pp. 1–11). Association for
Computational Linguistics. Consulté sur http://aclweb.org/anthology/

S17-1001 doi: 10.18653/v1/S17-1001
Firth, J. R. (1957). A synopsis of linguistic theory. , 1952-59, 1-32.
Gagniuc, P. A. (2017). Markov chains: From theory to implementation and experi-

mentation (First Edition éd.). John Wiley & Sons.
G.E. Hinton, D. R., J.L. McClelland. (1986). Parallel distributed processing: Explo-

rations in the microstructure of cognition. In (Vol. Volume 1: Foundations, chap.
Distributed representations). MIT Press.

Gladkova, A., Drozd, A., & Matsuoka, S. (2016). Analogy-based detection of mor-
phological and semantic relations with word embeddings: what works and what
doesn’t. In Proceedings of the student research workshop, srw@hlt-naacl 2016,
the 2016 conference of the north american chapter of the association for com-
putational linguistics: Human language technologies, san diego california, usa,
june 12-17, 2016 (pp. 8–15). Consulté sur http://aclweb.org/anthology/
N/N16/N16-2002.pdf

Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (3rd ed.). Baltimore,
MD, USA : Johns Hopkins University Press.

Harris, Z. (1954). Distributional structure. Word, 10(23), 146–162.
Janssen, T. M. V. (2017). Montague semantics. In E. N. Zalta (Ed.), The stanford en-

cyclopedia of philosophy (Spring 2017 éd.). Metaphysics Research Lab, Stanford
University. https://plato.stanford.edu/archives/spr2017/entries/
montague-semantics/.

Jones, K. S. (1972). A statistical interpretation of term specificity and its application
in retrieval. Journal of Documentation, 28(1), 11-20.

Jurgens, D. A., Turney, P. D., Mohammad, S. M., & Holyoak, K. J. (2012). Semeval-

http://aclweb.org/anthology/C/C16/C16-1332.pdf
http://dblp.uni-trier.de/db/journals/libt/libt52.html#Dubin04
http://dblp.uni-trier.de/db/journals/libt/libt52.html#Dubin04
https://books.google.fr/books?id=Uof3tgAACAAJ
http://dblp.uni-trier.de/db/journals/corr/corr1411.html#FaruquiDJDHS14
http://dblp.uni-trier.de/db/journals/corr/corr1411.html#FaruquiDJDHS14
http://aclweb.org/anthology/S17-1001
http://aclweb.org/anthology/S17-1001
http://aclweb.org/anthology/N/N16/N16-2002.pdf
http://aclweb.org/anthology/N/N16/N16-2002.pdf
https://plato.stanford.edu/archives/spr2017/entries/montague-semantics/
https://plato.stanford.edu/archives/spr2017/entries/montague-semantics/

BIBLIOGRAPHY 71

2012 task 2: Measuring degrees of relational similarity. In Proceedings of the
first joint conference on lexical and computational semantics - volume 1: Pro-
ceedings of the main conference and the shared task, and volume 2: Proceed-
ings of the sixth international workshop on semantic evaluation (pp. 356–364).
Stroudsburg, PA, USA : Association for Computational Linguistics. Consulté sur
http://dl.acm.org/citation.cfm?id=2387636.2387693

Lee, D. D., & Seung, H. S. (2000). Algorithms for non-negative matrix factorization.
In Proceedings of the 13th international conference on neural information pro-
cessing systems (pp. 535–541). Cambridge, MA, USA : MIT Press. Consulté sur
http://dl.acm.org/citation.cfm?id=3008751.3008829

Levy, O., & Goldberg, Y. (2014). Linguistic regularities in sparse and explicit
word representations. In R. Morante & W. tau Yih (Eds.), Conll (p. 171-
180). ACL. Consulté sur http://dblp.uni-trier.de/db/conf/conll/

conll2014.html#LevyG14

Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving distributional similarity with
lessons learned from word embeddings. TACL, 3, 211–225.

Lickley, R. J., & Bard, E. G. (1998). When can listeners detect disfluency in
spontaneous speech? Language and Speech, 41(2), 203-226. Consulté sur
https://doi.org/10.1177/002383099804100204 (PMID: 10194877) doi:
10.1177/002383099804100204

Linzen, T. (2016). Issues in evaluating semantic spaces using word analogies. CoRR,
abs/1606.07736. Consulté sur http://dblp.uni-trier.de/db/journals/
corr/corr1606.html#Linzen16

Luhn, H. P. (1957, octobre). A statistical approach to mechanized encoding and
searching of literary information. IBM J. Res. Dev., 1(4), 309–317. Consulté sur
http://dx.doi.org/10.1147/rd.14.0309 doi: 10.1147/rd.14.0309

Mikolov, T. (2007). Language modeling for speech recognition in czech (Mémoire de
Master non publié). Brno University of Technology.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781. Consulté sur http://
arxiv.org/abs/1301.3781

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin, A. (2018). Advances
in pre-training distributed word representations. In Proceedings of the interna-
tional conference on language resources and evaluation (lrec 2018).

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., & Khudanpur, S. (2010). Recurrent
neural network based language model. In INTERSPEECH 2010, 11th annual
conference of the international speech communication association, makuhari,
chiba, japan, september 26-30, 2010 (pp. 1045–1048). Consulté sur http://

www.isca-speech.org/archive/interspeech_2010/i10_1045.html

http://dl.acm.org/citation.cfm?id=2387636.2387693
http://dl.acm.org/citation.cfm?id=3008751.3008829
http://dblp.uni-trier.de/db/conf/conll/conll2014.html#LevyG14
http://dblp.uni-trier.de/db/conf/conll/conll2014.html#LevyG14
https://doi.org/10.1177/002383099804100204
http://dblp.uni-trier.de/db/journals/corr/corr1606.html#Linzen16
http://dblp.uni-trier.de/db/journals/corr/corr1606.html#Linzen16
http://dx.doi.org/10.1147/rd.14.0309
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html

72 BIBLIOGRAPHY

Mikolov, T., Kopecky, J., Burget, L., Glembek, O., & Cernocky, J. (2009). Neu-
ral network based language models for highly inflective languages. In Pro-
ceedings of the 2009 ieee international conference on acoustics, speech and sig-
nal processing (pp. 4725–4728). Washington, DC, USA : IEEE Computer Soci-
ety. Consulté sur https://doi.org/10.1109/ICASSP.2009.4960686 doi:
10.1109/ICASSP.2009.4960686

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Dis-
tributed representations of words and phrases and their compositionality. CoRR,
abs/1310.4546. Consulté sur http://arxiv.org/abs/1310.4546

Mikolov, T., Yih, S. W.-t., & Zweig, G. (2013, May). Linguistic regularities in contin-
uous space word representations. In Proceedings of the 2013 conference of the
north american chapter of the association for computational linguistics: Human
language technologies (naacl-hlt-2013) (Proceedings of the 2013 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT-2013) éd.). Association for Com-
putational Linguistics. Consulté sur https://www.microsoft.com/en-us/
research/publication/linguistic-regularities-in-continuous

-space-word-representations/

Miller, G. A. (1995, novembre). Wordnet: A lexical database for english. Commun.
ACM, 38(11), 39–41. Consulté sur http://doi.acm.org/10.1145/219717

.219748 doi: 10.1145/219717.219748
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.

Philosophical Magazine, 2, 559-572.
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word

representation. In In emnlp.
Redington, M., Chater, N., & Finch, S. (1998). Distributional information: A powerful

cue for acquiring syntactic categories. Cognitive Science, 22, 425-469.
Sahlgren, M. (2006). The word-space model: Using distributional analysis to repre-

sent syntagmatic and paradigmatic relations between words in high-dimensional
vector spaces (Thèse de doctorat non publiée). Stockholm University, Stockholm,
Sweden.

Schwenk, H. (2007). Continuous space language models. Comput. Speech Lang.,
21(3), 492–518. Consulté sur http://dx.doi.org/10.1016/j.csl.2006

.09.003 doi: 10.1016/j.csl.2006.09.003
Turian, J., Ratinov, L., & Bengio, Y. (2010). Word representations: A simple

and general method for semi-supervised learning. In Proceedings of the 48th
annual meeting of the association for computational linguistics (pp. 384–394).
Stroudsburg, PA, USA : Association for Computational Linguistics. Consulté
sur http://dl.acm.org/citation.cfm?id=1858681.1858721

https://doi.org/10.1109/ICASSP.2009.4960686
http://arxiv.org/abs/1310.4546
https://www.microsoft.com/en-us/research/publication/linguistic-regularities-in-continuous-space-word-representations/
https://www.microsoft.com/en-us/research/publication/linguistic-regularities-in-continuous-space-word-representations/
https://www.microsoft.com/en-us/research/publication/linguistic-regularities-in-continuous-space-word-representations/
http://doi.acm.org/10.1145/219717.219748
http://doi.acm.org/10.1145/219717.219748
http://dx.doi.org/10.1016/j.csl.2006.09.003
http://dx.doi.org/10.1016/j.csl.2006.09.003
http://dl.acm.org/citation.cfm?id=1858681.1858721

BIBLIOGRAPHY 73

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal
of Machine Learning Research, 9, 2579–2605. Consulté sur http://www.jmlr
.org/papers/v9/vandermaaten08a.html

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html

