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ABSTRACT
The purpose of this research is to create a visual representation in the form of a

narrative chart of the first television season of the Game of Thrones series. We do
this in order to help clarify the character interactions and timeline in what is known
as a very complex story. To accomplish this we perform various text-based alignment
and extraction tasks on comparable corpora dealing with Game of Thrones. We use
the most accurate sets of results from these methods to incrementally improve upon
our narrative chart baseline. The final chart includes characters with speaking and
nonspeaking roles aligned by scenes in an episode. The chart also includes location
information to show where those scenes take place and lists of important words to
show at a glance the most important characters and concepts in that episode.

Key words : Corpus Alignment, Information Extraction, Comparable Corpora, Nar-
rative Chart, Dynamic Time Warping, Game of Thrones





INTRODUCTION
Game of Thrones is an immensely popular fantasy book series, written by author

George R. R. Martin. It has been adapted into an award-winning television series by
David Benioff and D. B. Weiss. Fans of the books and show have created an extensive
online wealth of information that ranges from character biographies, to episode re-
caps, to chapter summaries, and beyond. The story is famously complex, mostly due
to the sheer number of characters - each of which have their own alliances, agenda,
and loyalties. Many people find the television series too confusing because of the
manifold character interactions, many of whom have similar names or might appear
only once yet be vital to another part of the story.

The main objective of this study is to create a visual representation of the first sea-
son and book of Game of Thrones. We would like this visual representation to resem-
ble narrative charts similar to the narrative charts from the popular webcomic xkcd
as seen in Figure 0.1, but instead of creating them via manual effort, we endeavor
to form them using as much automatically generated and extracted information as
possible.

We strive for as much automation as possible in the production of our graph for
diverse reasons. Primarily we are interested in time consumed and the ability to
generalize the task. Each production of an entirely manually created narrative chart
takes a significant amount of time. The first creation of a narrative chart by writing
scripts and establishing automation methods also takes a significant amount of time
but due to the nature of automation, every other chart created on a different corpus
or for a different purpose takes considerably less time. For this gain in time we
unfortunately have to sacrifice accuracy, as our automatic methods are not as precise
as manual methods. However, this ability to create graphs more quickly is one of
the benefits of automation vs. manual effort. With automation, we would also be
able to create narrative charts on a wider scale to show to a populace whose interests
vary more than the individuals creating the graphs manually (e.g., Romantic-Comedy
movies, Science Fiction television series, political scandals on the news, etc.).

The narrative charts from xkcd seen in Figure 0.1, as described in the top text,
show character interactions over time in a series of popular movies. Different lines
converging indicates that the characters those lines represent, are together at that
point in time. In The Lord of the Rings and Star Wars charts, location information is
also provided, shown in the light grey oblongs over certain sections.

The multimedia corpus from which we would like to create our graph contains a
variety of sub-corpora. It includes: books, video, audio, subtitles, synopses, manual
transcripts, annotations, summaries, and character biographies.We need to organize
these corpora in a way that can be molded into a coherent narrative chart. To achieve
this, we will be using various alignment methods on various parts of the corpora,
as well as information extraction and information retrieval. When we talk about
alignment, we are referring to arranging sections of text from comparable corpora
that contain similarities and correspond to each other. These sections of texts can
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Figure 0.1: xkcd Narrative Charts

correspond to each other in a variety of ways: they can be talking about the same
event or action, describing the same character or location, etc.

The various alignments that we perform in this study are the following:

• characters & episodes where we align characters into the episodes in which
they appear

• characters & scenes where we align characters into the scenes in which they
appear

• subtitles & transcripts where we align what a character says according to the
subtitles and what a character actually says as heard by a person watching the
series

• transcripts & scenes where we align dialogue with the scene in which it be-
longs

• scenes & chapters where we try to align the scenes from the television series
with the chapters from the first book

Figure 0.2 shows a representation of which parts of our corpus are aligned with
which other parts. The different colors of each node, as well as their labels, show
the different sections of the Game of Thrones corpus that we use and the arrows
show which sections will be aligned. From these alignments, we will extract all the
pertinent information to form a narrative chart. We will create an initial graph with
the data from our first alignment and then try to progressively improve the graph’s
appearance and accuracy with each subsequent alignment.
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transcripts

charactersepisodes

scenes

chapters subtitles

Figure 0.2: Alignment Representation

These narrative charts are interesting in that they allow us to create a richer
text-based environment for deeper understanding of the subject. For example, a nar-
rative chart showing the sequence of character interactions in an episode of Game of
Thrones could help a confused viewer better understand at a glance what happened
in the episode and prepare them to watch the subsequent episode without becom-
ing lost in the storyline. In addition to the benefits of a graphic representation, the
aligned information could be useful for better responding to text based queries. For
example, one use could be to better search through video for concepts rather than
direct dialogue (e.g., every time a character dies, scenes containing a direwolf, etc.).

This paper details the execution of the various methods used to attain the objec-
tives for this thesis, including the alignment and extraction tasks performed and the
graphs created. In Chapter 1 we discuss other studies whose alignment and extrac-
tion work is related to ours. The details of the corpus we use are examined in Chapter
2. Chapter 3 elaborates on the tools and methods used in this study, including the
different alignments and extractions, and their evaluations for accuracy. Narrative
chart results are shown in Chapter 4, and we follow with a discussion of the study
and the results obtained in Chapter 5. A summary and possible expansions to this
study are found in the Conclusion.
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1.1 Introduction
There are two main subtasks that need to be undertaken in order for us to create

a narrative chart using the Game of Thrones corpus. The first is alignment between
the sections of the corpora and the second is information extraction, so we can take
pertinent information from the alignment results to put in the corpora. Our methods
are built upon methods in current literature, however, unlike many of the studies, we
focus entirely on the text aspect of our multimedia corpus. This both simplifies and
complicates our task. On one hand, we do not need to worry about how to parse audio
and video sequences to extract information from them. On the other hand, working
with a text-only corpus increases the difficulty of determining whether a character
is present or merely mentioned in a scene, and of distinguishing multiple characters
that share a single name or single characters given multiple names. In this chapter,
we discuss the works this study builds upon. We also look at some of the solutions
these studies propose for commonly arising obstacles to alignment and extraction
tasks.

1.2 Alignment Approaches
Using alignment methods to group multimedia corpora centered around televi-

sion programs is a relatively recent area of interest in natural language processing
research. [Gibbon, 2002], [Roy et al., 2014], and [Tapaswi et al., 2015] all used align-
ment methods in their studies. One of the main distinctions between alignment ap-
proaches is whether the corpora follow the same chronological sequence, as different
methods will have worse to zero performance if used on the incorrect type of corpora.

Our work primarily builds upon the methods shown in [Roy et al., 2014]. They
proposed three alignments: manual transcripts & subtitles, automatic transcripts
& subtitles, and episode outlines & manual transcripts, for television shows Game
of Thrones and The Big Bang Theory. To perform these alignments, they used the
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same Dynamic Time Warping method we propose in this study (see Section 3.2.1),
and they also used TF-IDF to improve their alignments. Due to the constraints given
by Dynamic Time Warping, their corpora is limited to corpora that al follow the same
chronological sequence.

[Tapaswi et al., 2015] also used Game of Thrones, as well as Harry Potter, in their
alignment tasks. They aligned video scenes with book chapters, which means that,
unlike [Roy et al., 2014], they used corpora not bound to the same chronological se-
quence. They used Dynamic Programming and face detection methods to find scene
segmentations and align characters within those scenes. They then charted number
of character occurrences from the scenes and chapters to get the similarity between
them for alignment. They also make an important distinction from other studies
in that they allow sections of their corpora to not be aligned rather than forcing an
alignment. This allows them to account for scenes from the television series which
do not appear in the book and vice versa.

[Gibbon, 2002] created an alignment between closed captions and transcripts in
order to chronologically align transcripts to television news programs. Since their
corpora follow the same chronological progression, they were able to use dynamic
programming methods in their alignment. They distinguished their method from
others by using a two step process, wherein they first aligned words from the closed
captions and transcripts using word edit distance, a count of how many changes are
necessary to turn one of the words into the other (e.g., “cat” and “hat” have an edit
distance of 1 because only one letter changes), then used their findings to align at the
sentence level based on the number of words in common.

Alignment methods are not always researched in order to better align televi-
sion series. Alignment has often been studied for plagiarism detection improve-
ment, as in [Sanchez-Perez et al., 2014]. Alignment can be useful in plagiarism de-
tection because two sentences with content similar enough to be aligned could also
contain copied or plagiarized text. TF-IDF is used to create sentence vectors in
[Sanchez-Perez et al., 2014] to determine if two sentences are similar and potentially
plagiarized. This is done by taking the cosine similarity of two sentence vectors, and
determining those sentences are suspect if the cosine similarity is above a defined
threshold. Like in [Gibbon, 2002], the number of words in common between the sen-
tences is then used to determine plagiarism.

Alignment has also been used to create corpora for learning text-to-text rewriting
rules, as in [Barzilay and Elhadad, 2003]. They addressed the issue of not having
chronologically synchronous texts to align with Dynamic Programming by first using
a clustering method to align paragraphs of text with similar topics. They postulated
that paragraphs with similar topics are more likely to contain sentences that can be
aligned with one another. Once aligned, they used a Dynamic Programming algo-
rithm locally on the sentences in the aligned paragraphs using lexical similarity to
determine if two sentences were aligned within the paragraph.

Our work incorporates many of these alignment techniques, notably by using Dy-
namic Time Warping methods and counts of tokens in common between documents.
Our work focuses on text-based alignment methods whereas many of these studies
mentioned include audio or video treatments. Where many of these studies focus on
methods of alignment for better search results or for creating corpora to use in other
natural language processing techniques, we focus on alignment for the purpose of
creating a visual representation. This representation allows us to draw out a com-
prehensible story from a mass of text, for simple and automatic clarification of the
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subject.

1.3 Information Extraction Approaches
Detecting certain kinds of information in a text is a commonly addressed problem

in the field of natural language processing, with no perfect solution. We focus on the
retrieval of two types of information from text: characters and locations.

1.3.1 Character Extraction
As discussed in [Vala et al., 2015], character identification is a more complex task

than many assume, and cannot simply be resolved with a standard Named Entity
Recognition tool. While these tools, when using specifically trained models, can iden-
tify the vast majority of characters, they can just as easily leave out minor charac-
ters whose references for example can be confused with a description of their func-
tion (e.g., “Mr. Bennet’s coachman”). Recognition tools are also incapable of relating
two names belonging to the same character together (e.g., “Mr. Darcy”, “Fitzwilliam
Darcy”). [Vala et al., 2015] proposed a technique to identify the various names of each
character in a text. They started by using the Stanford NER tool to find characters,
then applied a sequence of filters, mainly based on word context, to link the names.

[Roy et al., 2015] also proposed a method for detecting characters, though their
study focused on finding the name of a speaker for a line of dialogue in a text. They
postulated that a speaker can be identified using the content of their speech. They
used four lexical approaches, including TF-IDF, to create speaker models to use in
determining who said what. Both [Vala et al., 2015] and [Roy et al., 2015] are useful
but in different ways. [Vala et al., 2015] concentrated on finding the various names of
a single character in a text and [Roy et al., 2015] worked to abstract speakers whose
names are not contained in the dialogues used in their experiments.

1.3.2 Location Extraction
The second type of information we are concerned with is location information.

[Lingad et al., 2013] tested four different Named Entity Recognition tools, Stanford
NER, OpenNLP, Yahoo!PlaceMaker and TwitterNLP, to determine their accuracy
in extracting geographical locations and points-of-interest from Twitter data. They
found that Stanford NER outperformed the other tools both with the out-of-the-box
model and with models retrained specifically for their data.

Once NER tools extract location data from text, we still need to find a way to
relate these extracted locations to other known locations. This problem is similar
to the problem described for character extraction, where one character can have
many names. Both [Scheider and Purves, 2013] and [Leidner et al., 2003] hypothe-
sized about methods to determine a place’s location relative to other locations given
the location’s context in the text (e.g., “New York, USA” vs. “York, UK”).

1.4 Conclusion
In this chapter we discussed some of the most pertinent studies related to our the-

sis. We looked at different methods used in the current literature used for aligning
text and extracting information, which our study uses and elaborates on. We saw that
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Dynamic Programming techniques were commonly used to align chronologically syn-
chronous corpora but more varied methods were tested with asynchronous corpora.
The number of words in common seems to also be a commonly used metric for decid-
ing if two texts are similar or not. We saw that Named Entity Recognition tools are
a common solution to information extraction problems, though they introduce or at
least fail to simplify other complexities such as relating multiple names to the same
character. We will address some of these issues and describe our implementations of
some of these methods in Chapter 3.
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2.1 Introduction
This chapter gives information on the various aspects of our Game of Thrones

corpus. We give details about the books, video, audio, subtitles, synopses, manual
transcripts, annotations, summaries, and character biographies, and explain which
of these are used in our experiments and to what extent.

2.2 Corpora
Our multimedia corpus can be seen as a compilation of smaller corpora all dealing

with the same subject: Game of Thrones. We call these comparable corpora. Compa-
rable corpora can typically be in different languages, some are included in this corpus
in the audio and subtitles, but our study only deals with the sections in English.

2.2.1 Books
The book series is called A Song of Ice and Fire and is currently unfinished. As

of the writing of this thesis, five novels have been published out of a planned total of
seven. The corpus contains these five published books in plain text format, although
this study only concerns itself with the first of the books: A Game of Thrones. This
book contains 73 chapters and 293,655 total words. The chapters are used in the
scene recap & chapter alignments in Section 3.3.5. An extraction of the most signif-
icant words per chapter, as calculated with TF-IDF, was also performed in Section
3.4.2.

2.2.2 Video
The corpus contains the video of the first season of the adapted television series.

This video was extracted from the DVDs and provided by LIMSI. However, as our
study deals with the processing of text information, the use of this video is outside
the scope of this thesis.
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2.2.3 Audio

The corpus contains the audio to the first season of Game of Thrones. The audio is
in six different languages. This audio has also been provided by LIMSI and was also
extracted from the DVDs. It is not used in our study.

2.2.4 Subtitles

The subtitles included in the corpus were collected by a team from LIMSI from the
DVD version using Optical Character Recognition (OCR). They are complete for all
DVD released seasons of Game of Thrones in eighteen languages. Subtitles include a
line number, temporal stamp indicating where in the video a person says something
and a line of dialogue or sound effect. On occasion, a subtitle will include two lines
of dialogue or sound effects from different sources, this is shown by the two lines
of dialogue appearing on different lines and also starting with a hyphen “-”. Two
subtitles showing these structures are given in Figure 2.1. One speaker’s line can
appear in multiple subtitles as they only contain as much text as can easily fit on
the screen. The subtitles are used in the transcripts & subtitles alignment in Section
3.3.2.

137
00:16:30,799 --> 00:16:33,188
- (Pup cries)
- The direwolf is the sigil of your house.

138
00:16:34,519 --> 00:16:36,635
They were meant to have them.

Figure 2.1: Subtitles Format

2.2.5 Synopses

There is a short synopsis for each episode in the first season detailing very briefly
what happens in that episode. They range from 52 to 114 words and contain on
average 75 words. Due to their shorter length and relative word sparsity, they were
not included in our alignments but were added to our training corpus for the doc2vec
model described in Section 3.3.4. Figure 2.2 shows the synopsis for episode 3.

Jon Snow attempts to find his footing at Castle Black amidst
hostility and suspicion from his fellow members of the Night’s
Watch. Eddard Stark and his daughters arrive at King’s Landing.
Catelyn renews an old friendship with a member of the court,
while Daenerys and Viserys journey onwards to the Dothraki
capital of Vaes Dothrak.

Figure 2.2: Synopsis Format
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2.2.6 Manual Transcripts
The manual transcripts are similar to the subtitles but include speaker informa-

tion. However, they have been stripped of all temporal markings and line numbers.
The lines of the manual transcripts are separated by speaker, rather than by text
able to fit on a screen. They were made by fans on the internet and formatted by
LIMSI. They contain an accurate representation of what each speaker in the episode
says along with who said it. However they do not include dialogue in other languages
(e.g., Dothraki) or sound effect information as in the subtitles. An example of two
lines of the transcript is shown in Figure 2.3. The transcripts are used in the tran-
scripts & subtitles alignment in Section 3.3.2 and the transcripts & screen recaps
alignment in Section 3.3.4.

JON_SNOW : Lord Stark? There are five pups. One for each of
the Stark children. The direwolf is the sigil of your House.
They were meant to have them.
EDDARD_STARK : You will train them yourselves. You will feed
them yourselves. And if they die, you will bury them yourselves.

Figure 2.3: Manual Transcripts Format

2.2.7 Scene Recaps
The scene recaps provide summaries of each episode chronologically by scene.

These differ from the summaries in that each scene is described in order, rather
than having a text that is focused on summarizing by larger concepts. The scene
descriptions vary in length with the scene they are summarizing. These recaps were
written by fans and taken from the Game of Thrones Wiki.1 They exist for the first six
episodes of the first season. Each episode’s recap contains on average 4,453 words.
The scene recaps are used in the transcripts & scene recaps alignment in Section
3.3.4, and the scene recaps & chapters alignment in Section 3.3.5. We also use them
for extracting names and locations to improve the narrative chart in Section 3.4.1.

2.2.8 Annotations
There are three annotation sections in this corpus. The first is a chapter to scene

alignment from the [Tapaswi et al., 2015] results. This is in a JSON format and con-
tains information about which chapters in the first book correspond to which sections
of video. For each chapter included, the data also includes the chapter number and
title. For each video included, the data also includes its episode number, start and
end times for the section of video found for the chapter. The second annotation sec-
tion contains scene demarcations. For each episode in the first season, the start and
end times are provided for each scene. Lastly, the third annotation section has loca-
tion information. This location information is provided with episode number, scene
number, start and end times and has multiple levels of location precision (Winterfell
is more specific than the North which is more specific than Westeros). An example of
the location information can be seen in Figure 2.4.

1http://gameofthrones.wikia.com/wiki/Category:Recaps

http://gameofthrones.wikia.com/wiki/Category:Recaps
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4 4 301.1 384.9 Westeros the North Winterfell exterieur
4 5 384.9 586.7 Westeros the North Castle black exterieur
4 6 586.7 707.7 Essos Dothraki sea Vaes dothrak exterieur
4 7 707.7 988 Essos Dothraki sea Vaes dothrak interieur

Figure 2.4: Location Information Format

2.2.9 Summaries
There are four types of summaries for each episode of the first season of Game of

Thrones. The first of these types is a long summary, which describes in some detail
the happenings at each location shown in the episode (average length: 1,747 words).
The second type is the short summary, which briefly describes the main actions of
the episode (average length: 108 words). The last two are identical medium length
summaries but in different formats, one in a plain text format and the other in JSON,
with accompanying metadata such as the location and the episode number (average
length: 809 words). The text for each of these summaries was written by fans on
the internet. These summaries, with the exception of the summary in JSON format,
were also used in training the doc2vec model in Section 3.3.4.

2.2.10 Character Biographies
The character biographies were taken from the Game of Thrones Wiki2 using a

script in Python we wrote using BeautifulSoup.3 They deal with the characters pri-
marily as they are in the television series than as they are in the books, as some-
times there is a difference. Depending on how important the character is and how
often they appear, these biographies contain more or less information. They contain
a history of the character separated by season, pictures of the character, a list of ap-
pearances by episode, a comparison with the book representation of the character,
family tree, quotes, aliases, actor’s name from the series, etc. As the information has
been added by numerous fans of the series, it is not necessarily consistent across all
characters. The list of appearances by episode was used in the alignment of charac-
ters to episodes in Section 3.3.3.

2.3 Conclusion
In sum, our corpus is comprised of smaller comparable corpora, primarily in En-

glish and all treating the subject of Game of Thrones. We looked at the structure of
these various parts and will, in later sections, see how these corpora can be aligned.

2http://gameofthrones.wikia.com/wiki/Category:Season_1_Characters?display=
page&sort=mostvisited

3https://www.crummy.com/software/BeautifulSoup/

http://gameofthrones.wikia.com/wiki/Category:Season_1_Characters?display=page&sort=mostvisited
http://gameofthrones.wikia.com/wiki/Category:Season_1_Characters?display=page&sort=mostvisited
https://www.crummy.com/software/BeautifulSoup/


Part II

Experiments





C
H

A
P

T
E

R

3
METHODS

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Tools and Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Introduction
In this chapter we explore the various alignments and extraction techniques we

use to incrementally improve the accuracy and completeness of our narrative chart
depicting the first season and book of Game of Thrones. First we elaborate on the
tools and libraries we use to perform our alignments, extractions, and charts. We
then describe the process for aligning characters & episodes, transcripts & subtitles,
characters & scenes, transcripts & scene recaps, and scene recaps & chapters. We
also describe our processes for extracting the pertinent information to create a nar-
rative chart. Lastly, we show our narrative chart improving over time with each sub-
sequent alignment and extraction, and provide initial evaluations for the accuracy of
our alignments.

3.2 Tools and Libraries
To accomplish our alignment, extraction, and graphing tasks we use an assort-

ment of programming tools and libraries which will be elaborated on in this section.
With the exception of the use of the charting libraries for the narrative charts, all
programs were written in Python for version 2.7.12.

3.2.1 Dynamic Time Warping
Dynamic Time Warping, introduced in [Sakoe and Chiba, 1978], allows two se-

quences of different lengths to be mapped together in a non-linear way. For instance,
given the same story, the time spent on specific details will differ between narrators
in their respective documents. If we want to map the documents with each other line
by line, we cannot do it linearly, as the lines from each document are “out of sync”.
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Dynamic Time Warping attempts to solve this problem by non-linearly mapping sub-
sections across documents.

To do so, we compute the distance matrix from comparing each subsection of a
document, in our case spoken lines, with every other subsection from another doc-
ument. This distance matrix is then used to create a third path that decreases the
distance between the two documents. This path is found by using a distance mea-
sure, adaptable by the user, that is pertinent to the sequences. We extract various
types of features to use in our distance measures to align the corpora such as tokens,
nouns, lemmas, etc. The distance measure used for this algorithm is specified in each
alignment section that makes use of it.

Figure 3.1: Dynamic Time Warping Example

Figure 3.1 shows an example of transcripts and subtitles being mapped together
with the Dynamic Time Warping method. Distances between transcripts from doc-
ument A and subtitles from document B are shown in the distance matrix on the
right. Shades of yellow are used to show approximate distances (paler yellow means
the lines are more similar and darker yellow means they are more different). The red
shows the path created that minimizes the differences between the transcripts and
subtitles. The graphic on the bottom shows how the red path is used to align the two
sets of documents. Each subtitle on the lower line is paired with at least one of the
transcripts on the upper line.

The Dynamic Time Warping path found must adhere to certain restrictions, those
inherent to the algorithm and those specified by the user. There are three primary
restrictions built in:

1. The path must start at (0, 0) and end at (m, n) (m being length of sequence 1
and n being length of sequence 2)
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2. The path can only go forwards and cannot double back in time (i.e., the path
can only go to the right, downwards, or diagonal down to the right)

3. The path can only advance one step at a time

Depending on the implementation, users can also specify whether they want to con-
strain the path’s ability to go in a certain direction (e.g., the path cannot advance
vertically), how far away from the diagonal the path can go, or the maximum incline
of the path on the graph.

The algorithm uses backtracking to find the optimal path with the distance mea-
sure provided. This means that the path is not constructed during the distance cal-
culations and can only be traced once all the distances have been calculated. Due to
this, the path does not always go through the point containing the smallest distance,
but it does find the best, least-overall-distance path considering all distances between
the two sequences.

We used the pyannote library1 implementation of this algorithm. The pyannote
library contains a series of algorithm implementations for processing multimedia
corpora.

3.2.2 Feature Extraction
To compare and find the distance between or similarity of the documents in our

corpora, we need to extract features, or properties, to use in our assorted distance
measures. We selected a number of different features from our corpora including
tokens, lemmas, various parts of speech, word vectors, document vectors, and TF-
IDF scores.

Tokens

The simplest form of feature extraction we used was an extraction of all tokens.
We define a token for this study as a sequence of letters, numbers, or punctuation
delimited by whitespace. They were found using the tokenizer feature of the Spacy
library.2 Spacy is an open-source library and Python API for common natural lan-
guage processing tasks.

Lemmas

Another feature we extracted with the help of Spacy was lemmas. Lemmas are
the canonical/base form of a word, without inflectional suffixes. Spacy strips words of
these suffixes using WordNet data and an extension to cover pronouns. For example,
“walked" and “wolves" become “walk" and “wolf". The definition of a lemma is further
expounded in [Mair and Hundt, 2000].

Parts of Speech

We also use part-of-speech tags as a filtering method for which tokens to extract.
Part-of-speech tags are identifier tokens that represent a word class (e.g., noun, verb,
adjective, etc.) for a token. We tagged our tokens with Spacy’s part-of-speech tagger,
which uses the Penn Treebank tag set. The Penn Treebank tag set contains a wide

1https://github.com/pyannote
2https://spacy.io/

https://github.com/pyannote
https://spacy.io/
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variety of part-of-speech tags including for example: ‘VB’ (base form of a verb), ‘UH’
(interjection), and ‘NNS’ (plural noun). A full explanation of part-of-speech tagging
and Penn Treebank is found in [Santorini, 1990].

Word2vec

Word2vec, introduced in [Mikolov et al., 2013], is a group of machine learning
models that use shallow learning to create a vector space of words where each word
is assigned to a different vector. Each value in the vector corresponds to different
features of the words found in context (i.e., words before and after in a sentence)
of the word throughout the training corpus. Words tend to have similar vector val-
ues to their synonyms or related words, because the vector values are based on the
words’ context and similar words tend to appear in similar contexts. For example, we
can see how “prince” and “princess” would attain similar vectors if our training cor-
pus contained the phrases: “The prince drank the poison”, “The princess drank the
wine”, “The prince ordered his guards away”, and “The princess ordered her maid-
ens away”. Both “prince” and “princess” appear in very similar word contexts. This
method of creating word vectors also has an interesting side effect. Due to the rela-
tions between the word vectors, mathematical operations on the vectors can lead to
interesting semantic results, for example: “woman” - “man” == “princess” - “prince”.

We use the Spacy implementation of word2vec as well as Spacy’s built-in word
vectors, which were trained on data from Wikipedia using a dependency-based model
from [Levy and Goldberg, 2014], in our experiments. We hypothesized that using
word vectors instead of tokens in our distance measures could allow us to find more
similarity between documents containing the same event in different but similar
words. For example, this would allow us to compare scene recaps and book chapters
even though the writing style and vocabulary used in the scene recaps, written by
fans on the internet, differs from those of the books, written by George R.R. Martin.

Doc2vec

Doc2vec is a similar concept to word2vec. The two each contain word vectors cal-
culated using word contexts, but doc2vec has an additional vector per paragraph that
is calculated at the same time as the word vectors during training. This vector goes
by many names (e.g., paragraph vector, document vector, sentence vector, etc.), but
all describe a vector that is calculated using the same methods as in word2vec but
on a group of words rather than an individual word. The doc2vec algorithm was pro-
posed in [Le and Mikolov, 2014] and according to them, paragraph vectors improve
performance over word vectors when comparing documents rather than individual
words.

Since we also compare documents in our corpora, we use doc2vec to extract docu-
ment vectors for use in one of our distance measures. For this we used the Gensim3

implementation which is based on the aforementioned paper. Gensim is a Python
library for semantic modeling and machine learning.

Figures 3.2a and 3.2b from [Le and Mikolov, 2014] show a representation of the
difference between training a word2vec and a doc2vec model. It shows that they
are identical but for an additional paragraph matrix that serves as the paragraph id
in doc2vec. The vector representations of the words and the paragraph matrix are

3https://radimrehurek.com/gensim/

https://radimrehurek.com/gensim/
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determined using the same methods. The paragraph id however, since it is trained
using the words in the paragraph, keeps a sense of word order. This allows us to
distinguish the phrases “the dragons ate the sheep” and “the sheep ate the dragons”
as different, whereas in a word2vec implementation comparing individual words in a
document, the two phrases would be identical.

(a) Word2vec representation (b) Doc2vec representation

Figure 3.2: Doc2vec vs. Word2vec Representations

TF-IDF

TF-IDF stands for term frequency–inverse document frequency. It is a method of
finding important tokens in a document amongst many documents. The important
tokens in a document are tokens that occur relatively frequently in that document
and do not appear in a relative number of the rest of the documents. So for example,
given the three documents:

• “Eddard of the House Stark”

• “the banners of House Stark and House Baratheon”

• “Robert of House Baratheon”

“Eddard” would be important in document 1, “banners” and “and” in document 2,
and “Robert” in document 3. The other tokens (“Baratheon”, “of”, “the”, “House”,
and “Stark”) occur in too great a percentage of the other documents to be considered
important to a single document.

The TF-IDF is calculated by taking the product of the term frequency and the
inverse document frequency. The term frequency is the number n of times a term
t occurs in a document d divided by the number of words in the document nd. The
inverse document frequency is calculated by taking the log of the total number of
documents N over the document frequency df of term t (the number of documents in
which the term appears at least once). Figure 3.3 shows these formulae in mathe-
matical notation. TF-IDF is explained in greater statistical detail in [Jones, 1972].

We use TF-IDF in our alignments to try to group documents that share key to-
kens. This comes from the idea that even if many characters, places, and themes
are recurring, there is probably a defining event in a document that singles it out
from others. Hopefully documents from each of the corpora we are trying to align will
contain tokens pertaining to this key event so they can be paired using the TF-IDF
scores of these tokens.
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tft,d =

nt,d

nd

idft = log

N
dft

tf -idft,d = tft,d ◊ idft

Figure 3.3: Formulae to Calculate TF-IDF

3.2.3 Named Entity Recognition

One of the main tools we use for extracting information from our alignments is
Named Entity Recognition (NER). Named Entities are elements in a text which be-
long to one or more predefined categories (e.g., person, location, organization, date,
etc.) and Recognition refers to our ability to extract these entities from a text and
class them into the appropriate category. For example, in the sentence “Stark will
never consent to leave Winterfell”, ideally an NER tool will recognize “Stark” as a
person and “Winterfell” as a location.

We tested both the Stanford NER and Spacy tools with our data. The outputs of
the two programs were similar, and neither was completely accurate. Both Stanford
NER and Spacy use machine learning techniques in their Named Entity Recogniz-
ers. Stanford NER uses a Conditional Random Field sequence model and Spacy uses
a method similar to the one described in [Ratinov and Roth, 2009] but with the aver-
aged perceptron.

3.2.4 Text Normalization

The experiments were tested with both preprocessed and non-preprocessed text.
The preprocessing was performed in a Python function and deleted punctuation,
made all the text lowercase, and expanded contractions (e.g., “they’re” becomes “they
are”). The results were generally better with preprocessed text and we report our
results from the experiments using preprocessed text.

3.2.5 Charting Libraries

Two charting libraries were used to create the narrative charts. The first,
Tapestry, was created by Nashville-based programming bloggers, the websages, for
personal use though they open sourced their code on Github.4 It uses a program in
Javascript to parse and graphically illustrate character and episode data formatted in
XML and JSON files. Tapestry was discarded after the first narrative chart in favor
of another library that produces a tidier chart, more similar to the xkcd charts. This
second library is called D3-layout-narrative and was created by an employee at the
Australian Broadcasting Corporation, who also open sourced their code on Github.5
It also uses a Javascript program to parse and illustrate data from a JSON file.

The other charts used throughout this paper to illustrate various paths and align-
ments were created in Python using Matplotlib, a popular Python plotting library.

4https://github.com/websages/tapestry
5https://github.com/abcnews/d3-layout-narrative

https://github.com/websages/tapestry
https://github.com/abcnews/d3-layout-narrative
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3.3 Alignments
In this section, we describe the methods used to perform our various alignments

on the comparable corpora using the tools and libraries described in Section 3.2. We
also present evaluations for the accuracy of the alignments performed in the form of
F-measure comparison tables.

First we calculate precision as the percentage of alignments found that are cor-
rect, then we compute recall, which is the percentage of correct alignments found.
Finally, the F-measure for each episode is calculated by taking the harmonic mean of
the precision and recall. The F-measure ranges from 0 (worst) to 1 (best).

The three measures were calculated using the following formulae:

precision =

number of correct alignments found
all alignments found

recall =

number of correct alignments found
all expected alignments

F -measure = 2 ◊ precision ◊ recall

precision + recall

3.3.1 Characters & Episodes Alignment
To create a baseline for our narrative chart, we needed to assemble the Game

of Thrones data into the format understood by the charting library, which is a list
of people per unit of time. We first decided to test an alignment of characters per
episode in which they appeared. To gather this information, we wrote a web scraper
in Python to browse the Game of Thrones Wiki using the BeautifulSoup web parser
library. To obtain all of the character pages, our script identifies each character page
from a list of the characters who appear in season 1, taken from the Game of Thrones
Wiki6.

The web scraper then visits each character page to download the character’s bi-
ography. The HTML dump is then parsed with BeautifulSoup selectors to extract
the desired information, namely the list of episodes in which each character appears.
This information is finally formatted into the XML and JSON formats understood by
the Tapestry library which will be used to generate the narrative chart. This format
is shown in Figure 3.4.

Episodes each have an id, a name, a start time, a duration, and a list of the ids of
all the characters that appear in that episode. Characters each have an id, a name,
and a group. The group property is meant for grouping by family loyalty or other
division, but is not explored in this study and could be interesting to pursue further
at a later date.

Unfortunately this narrative chart did not help clarify the Game of Thrones char-
acter interactions, as seen in the Results chapter (Section 4). We hypothesise that

6http://gameofthrones.wikia.com/wiki/Category:Season_1_Characters?display=
page

http://gameofthrones.wikia.com/wiki/Category:Season_1_Characters?display=page
http://gameofthrones.wikia.com/wiki/Category:Season_1_Characters?display=page
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"episodes": [
{ "id": 1,
"name": "Winter is Coming (episode)"
"start": 10,
"duration": 30,
"chars": [3, 9, 10, 12, 13, 18, 19, 23, 25, 30, 41, ...]

},
...

<characters>
<character group="0" id="0" name="Aemon" />
<character group="0" id="1" name="Allo" />
<character group="0" id="2" name="Armeca" />
...

Figure 3.4: Data Format for Character & Episode Alignment in Tapestry

some other division of time throughout the series is necessary to improve the gran-
ularity of the graph. We decided to divide the task into more manageable units and
make a chart per episode with the characters aligned by scenes in which they appear
rather than by episodes. This will improve the clarity of the graph, bringing it closer
to its purpose of showing information in an as transparent and meaningful way as
possible. The process for this alignment is examined in the following sections.

3.3.2 Transcripts & Subtitles Alignment

In order to improve the graph and create an alignment of characters to scenes we
first needed to know when each character speaks during the episode. Using the scene
segmentations in the corpus acquired from the book2movie, [Tapaswi et al., 2015],
results, and the timestamp included in the subtitle format, we are able to
place the speaker into a particular scene. As stated in their article, the au-
thors find scene boundaries using a dynamic programming technique suggested in
[Tapaswi et al., 2014], which is said to not be 100% accurate but with no mention
of precisely how accurate the result are. Nevertheless, manual verification revealed
that the results were accurate within the range of human error and it was decided
that it would be enough to yield exploitable results.

The goal for this alignment was to match each subtitle, as seen in the upper left of
Figure 3.5, (whose format consists of a line number, a timestamp and a spoken line),
with a transcript, as seen in the upper right of Figure 3.5, (whose format consists of
the name of the speaker and the spoken line). It is worth noting that the transcript
usually contains the exact line, as heard by an annotator, while the subtitles can
sometimes contain a shortened variation, according to screen space constraints.

Once matched, we combined the two items into a new format so that each subtitle
had a speaker name associated to it. The format of the result is seen in the lower line
of Figure 3.5. It consists of a timestamp in seconds, the speaker name and the spoken
line. Using the line from the transcript rather than the line from the subtitle would
make some cases more orthographically correct, but the transcript lines sometimes
spreads over many subtitle lines for one speaker. It would be impractical to split the
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transcript lines in a way that exactly coordinates each sub-line of the transcript to
the subtitle timestamps.

14
00:03:24,280-->00:03:25,679
Do the dead frighten you?

WAYMAR_ROYCE:
Do the dead frighten you?

»

204.280 205.679 WAYMAR_ROYCE Do the dead frighten you?

Figure 3.5: Data Transformation for Transcripts & Subtitles Alignment

This alignment was performed using a script forked from the work of
[Roy et al., 2014], and for this alignment the script was only slightly modified. It
uses the Dynamic Time Warping module from the pyannote library to find the best
overall match, taking all data into consideration, of each of the subtitles to the tran-
scripts. This script, written in Python, proved essential, not only for this alignment,
but also for the alignment of the transcripts with the scene recaps.

The script takes two sets of data, in our case: parsed subtitles and transcripts,
and matches them according to the dynamic time warping algorithm constraints (de-
scribed in Section 3.2.1), including user defined constraints, and a comparison func-
tion specified by the user which measures distance between sequences.

In this case, no extra constraints were specified. The distance is computed by
counting common tokens in each line. Note that there is no text normalization or
lemmatization used in this step. The algorithm takes the distance from each subtitle
and transcript and creates a distance matrix, in which it then looks for the best path
between the two sequences of texts. We established earlier that the best path is the
one that minimizes the overall distance between the two sequences.

The evaluations in Table 3.1 were obtained by comparing the automatically gen-
erated results with a manual alignment. This evaluation process is further detailed
in Chapter 4.

Precision Recall F-measure
Episode 1 0.811 0.809 0.810
Episode 2 0.863 0.861 0.862
Episode 3 0.899 0.898 0.899

Table 3.1: Transcripts & Subtitles Alignment Evaluation

The results are favorable but somewhat lower than what one might expect in this
alignment, given that the subtitles are very similar if not identical to the transcript of
what is actually said in the scene. We explain this drop in accuracy primarily by the
occurrence of sound effects in the subtitles: The subtitles incorporate environmental
noises such as "(Horse snorts)" and "(speaking Dothraki)" but the transcripts make
no mention of them. This created a misalignment because one of the constraints is
that every subtitle needs to be aligned with a transcript. However, the sound effects
were left in the data because we recognized that they would be useful in later types
of alignments such as a subtitle & chapter alignment. This study does not include
theses alignments but they would be an avenue to explore in further studies. Other
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errors were due to the occurrence of interjections such as "uh" or "oh", or a character’s
name being called which is missing from either the subtitles or transcripts.

3.3.3 Characters & Scenes Alignment
As mentioned earlier at the end of Section 3.3.1, to improve our current version

of the narrative chart, we need to align characters not by the episodes in which they
appear, but by scenes. To do this we first needed to create an alignment between the
subtitles and the transcripts in order to know who talked when in the series, which
we did in Section 3.3.2. We are now going to use this information to divide the result
of the subtitles & transcripts alignment into the scenes in which they belong. To do
this we are going to use the scene segmentations from the book2movie data.

At this stage it was a simple matter of using a script in Python to compare the
name of a character speaking to a list of characters and associated ids (generated in
alphabetical order), and associate that id with the correct scene based on the times-
tamp. The start time for the aligned subtitle-transcript was compared with each
scene’s start and end times, and the character id was placed in the scene when the
timestamp fit chronologically between the scene’s start and end.

One limitation of this particular method is that characters without speaking lines
but who are nonetheless present in the scene are ignored. This issue will be further
addressed in Section 3.4.1.

3.3.4 Transcripts & Scene Recaps Alignment
To enhance the narrative chart further, we will concentrate on adding more and

varied information to it. To do this, we need to continue our alignments to gather
this supplementary information. We try various different methods to achieve the
best alignment possible in the section. This is because the best possible alignment
will contain the most accurate information to add to our narrative chart. This section
will elaborate on the ten different ways we attempted to align transcripts & scene
recaps. For these alignments, we again used the Dynamic Time Warping script men-
tioned in earlier sections. The script was modified for each section to extract different
features for each of the tests. The different features we extract are tokens, lemmas,
word embeddings, document embeddings, and parts of speech. The basic algorithm
is unchanged but we wrote in an added constraint on the direction that the path can
take when trying to find the optimal line from the start of the transcripts and recaps
to the end. This constraint was added so that multiple transcripts could be aligned
to a single scene but a single transcript could not be aligned to multiple scenes. This
means that all dialogue is contained within the scene, and no one can be said to talk
over a scene transition. Two tables, Table A.1 and Table A.2 showing the results of
all the evaluations in this section side by side can be found in the Annex.

Tokens in common

The first two ways we try to align transcripts (noted #1 and #2) with scene re-
caps are very similar. The features extracted from the two series of texts are tokens.
The tokens, as mentioned above have been preprocessed but they have not been lem-
matized or stemmed. The distance measure used for the Dynamic Time Warping
algorithm is, like in Section 3.3.2, number of tokens in common. The difference be-
tween the two distance measures is the direction in which we calculate the number
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of tokens in common. The first method subtracts the number of common tokens from
the number of tokens in the scene recap to use the number of unique tokens in the
scene. The second method subtracts the number of common tokens from the number
of tokens in the transcript to use the number of unique tokens in the transcript. The
latter option works considerably better (as we can see in Table 3.2) as the transcripts
are considerably shorter than the scene recaps, and so have fewer tokens that can be
shared across other transcripts.

Method #3 uses the same distance measure of tokens as the second method, but
normalized. This normalization is performed by dividing the result of the second
distance by the total number of tokens in the transcript. This attempts to dimin-
ish the bias of longer transcripts versus shorter transcripts, the idea being that
longer transcripts have more opportunities to have tokens in common with the scene
than shorter transcripts do. This normalization gives more accurate results in some
episodes but not on average as seen in Table 3.2.

Figures 3.6, 3.7, and 3.8 contain the formulae used to calculate methods one, two
and three. We define the words contained in the transcript, t, as t =
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Figure 3.6: Method #1
Formula
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Figure 3.7: Method #2
Formula
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Figure 3.8: Method #3
Formula

Method #1 Method #2 Method #3
SR - (T + SR) T - (SR + T) T - (SR + T)

(norm)
Episode 1 0.006 0.854 0.864
Episode 2 0.003 0.679 0.754
Episode 3 0.014 0.893 0.825
Episode 4 0.009 0.920 0.868
Episode 5 0.009 0.806 0.780
Average 0.008 0.830 0.818

Table 3.2: Transcripts & Scene Recaps Alignment Evaluation - Tokens in Common

Table 3.2 shows a comparison of F-measures for the alignments tested above for
the first five episodes. We can see that the first distance measure method (unique
tokens in scenes) is very ineffective. Distances measure methods #2 and #3 (unique
tokens in transcripts and unique tokens in transcripts normalized) are much more
productive.

Lemmas in common

The next step was to try to compare more tokens by using the token’s lemmas
instead of the entire word. This would allow us to compare tokens with different suf-
fixes like “walked” and “walking” that might appear in each of the texts but describe
the same thing.

The same structure was kept for the distances as the structure we had in method
two and three. Method #2’ uses the same formula as is shown in Figure 3.7 and
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method #3’ uses the formula shown in Figure 3.8, however, we redefine t and s to
contain lemmas instead of words (t =

)
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, l
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, ..., l

t
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*
, s = {l

s
1

, l

s
2

, ..., l

s
m}). The number of

unique lemmas in the transcripts was first used and then for our second experiment,
we took this number and divided it by the total number of lemmas in the transcripts,
as we did in the normalization section previously. Table 3.3 shows a comparison of
F-measures of these two new alignment methods, (named #2’ and #3’). We can see
in this table that method four, the one without normalization performed better this
time. This contrasts the previous experiment where the normalization was better.
A reversal of leading values like this could indicate that the normalization perhaps
does not have as much effect on the alignment as was previously thought.

Method #2’ Method #3’
T - (SR + T) T - (SR + T)

(norm)
Episode 1 0.867 0.851
Episode 2 0.716 0.689
Episode 3 0.839 0.862
Episode 4 0.905 0.863
Episode 5 0.806 0.764
Average 0.826 0.805

Table 3.3: Transcripts & Scene Recaps Alignment Evaluation - Lemmas in Common

(a) Episode 2 (b) Episode 3

Figure 3.9: Transcripts & Scene Recaps Alignment Path - Lemmas in Common

To aid in the visualization of these evaluation scores, we plotted the alignment
path found with method #2’ (lemmas in common) with the alignment path decided
upon manually. The worst performing episode, episode 2, is shown on the left in
Figure 3.9a and the best performing episode, episode 3, is on the right in Figure 3.9b.
We can see that the lines mostly overlap in episode 3, showing a close correlation
between the manual alignment and the automatic alignment, whereas in episode 2,
the lines diverge and show at what point the algorithm did not correctly align the
transcripts and scene recaps.

We hypothesize that these errors are a result of having a significant number of
similar functional words in those sections. The original form of these functional
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words (e.g., “is”, “was”, “are”), as used in Section 3.3.4, provides more of a distinc-
tion between the scenes and transcripts than when all are lemmatized (e.g., “be”,
“be”, “be”). When more of the features are shared across scenes or transcripts in a
sequence, the distinction between them is blurred, making it more difficult for the
Dynamic Time Warping algorithm to find the correct path.

Word2vec

Two distance measures using word2vec were tested to align scene recaps and
transcripts.

The first method using word2vec, method #4 uses a sum of all the word vectors
in a document to compare its similarity to summations of word vectors of other doc-
uments. This is similar to the idea of doc2vec which is discussed in Section 3.3.4,
although with a different implementation. The distance is calculated by first finding
the vectors for each word in each document using the model included in the Spacy
library. The vectors for each document are then added together to form one single
vector. The Dynamic Time Warping Algorithm then takes the cosine similarity of
these vectors (each transcript with each scene recap) to create its distance matrix.

For the second method using word2vec, method #5, we compute the word vector
for each word in a document and then individually take the distance between them
and individual word vectors from each other document. The mean of the smallest
distance of the individual word vectors from each pair of documents was kept as the
distance for that pair of documents. Then, using these distances, we can use the
Dynamic Time Warping algorithm to determine the pairs of aligned documents on an
episode scale.

Figures 3.10 and 3.11 contain the formulae used to calculate methods four and
five. We define the word vectors contained in the transcript, t, as t =
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Method #4 Method #5
Averaged Individual

Episode 1 0.589 0.851
Episode 2 0.490 0.699
Episode 3 0.593 0.808
Episode 4 0.778 0.823
Episode 5 0.198 0.757
Average 0.529 0.787

Table 3.4: Transcripts & Scene Recaps Alignment Evaluation - Word2vec

Table 3.4 shows a comparison of F-measures for the results of these two distance
measures using word2vec. We can see that the distance measure using individual
word vectors performed better than the one using averaged word vectors. There was
a clear issue in the alignment of episode 5 in the former alignment. This is because
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some transcripts only contained a name or other information not recognized by our
word2vec model, so the result of that word was undefined. The Dynamic Time Warp-
ing algorithm needs all distances to be defined so to resolve this issue and continue
the alignment, these undefined values were then given an arbitrary value (equal to
the maximum distance) but these values had a negative effect in the Dynamic Time
Warping algorithm and ruined the accuracy of the alignment.

As in the previous section, we plotted the automatic alignments for each episode
along with a manual alignment to help see where the algorithm erred in its align-
ment. For this visualization we chose to show the worst and best alignment results
from the better-performing word2vec distance measures, the one using individual
word vectors rather than averaged word vectors. We can see in Figure 3.12a that
episode 2 is still the episode with the worst alignment results. We can even see that
there is a similar shape in the errors when compared to the path in Figure 3.9a. The
exact reason could not be ascertained upon closer inspection of the data, especially
in the first diversion around scene three. The diversion around scene 27 however is
somewhat more clear. The scene recap for scene 27 is much longer than the recaps
surrounding it and therefore contains more possibilities with with it can be matched.
In addition the dialogue belonging to scenes 25 and 26 is quite short and contains the
same characters as scene 27, so there is insufficient data to make a scene division
decision in the transcripts. For this distance measure, episode 4 had the best results
as seen in the way the two path lines mostly overlap, and confirmed in the results in
Table 3.4.

(a) Episode 2 (b) Episode 4

Figure 3.12: Transcripts & Scene Recaps Alignment Path - Word2vec

Figures 3.12a and 3.12b represent the difference between these two word2vec dis-
tance measures. The blue squares represent individual words in a scene document
and the red dots are individual words in a transcript document. We can see in Figure
3.12a showing a representation of the averaged vectors as a line between averaged
scene recap (turquoise triangle) to averaged transcript vectors (pink triangle), that
the distance using the averaged vectors can easily be skewed by having a great num-
ber of common words, such as “the”, “of”, etc., in common but less easily takes into
account a single occurrence of a very unique word. This could hamper alignments
between documents that both contain many common words and even the same char-
acters or places, but each also contain a relatively infrequently occurring key word or
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phrase that could identify them as a pair. The triangles represent the result of the
averaged vectors and the line connecting them shows the alignment made.

On the right, in Figure 3.13b showing the individual vector comparisons, the dis-
tance between a red dot is taken with each of the blue squares and the average of
the smallest distance between each of the red dots and blue squares is kept as the
alignment distance for those two documents. We can see that if the unique word
is repeated in both the scene and the transcript (or, according to word2vec proper-
ties, a very similar unique word), we can give more weight in the alignment to this
unique word in the document alignment. This allows us to compare key words in the
alignment rather than using a generalization using all the words in the document.

(a) Averaged Vectors (b) Individual Vectors

Figure 3.13: Word2vec Alignment Representations

Doc2vec

Unlike in Section 3.3.4, we did not use a pre-trained vector model. This is because,
for doc2vec, the paragraph vector is trained at the same time as the word vectors
in order to have the paragraph id be a vector containing word order. We used the
default settings in Gensim to train our model as they are as close as possible to what
was presented in [Le and Mikolov, 2014], except for the number of epochs which was
increased from 5 to 10, and used everything in our Game of Thrones corpus that was
available in plain text format, preprocessed, in the training corpus.

Our doc2vec distance was calculated using the same equation as method four,
shown in Figure 3.10. To use this equation with doc2vec, we redefine t and s, adding
the paragraph vector v

p, as t

Õ
= t fi {v

p} and s

Õ
= s fi {v

p}.

F-measure
Episode 1 0.658
Episode 2 0.765
Episode 3 0.819
Episode 4 0.800
Episode 5 0.801
Average 0.769

Table 3.5: Transcripts & Scene Recaps Alignment Evaluation - Doc2vec
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The results show a definite improvement on our naive document vector imple-
mentation (the first word2vec alignment), but do not quite attain the performance
level of the second word2vec alignment. Undoubtedly, this could be improved upon
by experimenting with the training settings, the number of training epochs and the
amount of training data.

Part-of-Speech selection

In an attempt to improve the previous word2vec alignments, we decided to com-
pare words based on their part of speech, rather than all words. We hypothesized
that the words that would have the highest impact on the alignment only belong to
a few linguistic categories, the others being too common throughout the documents
to declare a difference from one document to the next. The parts of speech we chose
to compare are: nouns, main verbs, adjectives and combinations thereof. Both the
summed vectors and individual words alignments were redone with the difference
being that before the documents are fed into the algorithm for distance measuring,
they are first filtered to contain only the words with the part of speech desired. To do
this all the words were first tagged with their part of speech using the Spacy library
which performs within 1% of the state of the art on this task.

Part-of-speech F-measure
all words 0.477
nouns, adjs, verbs 0.048
nouns, verbs 0.048
nouns 0.021
verbs 0.012
Average 0.121

Table 3.6: Transcripts & Scene Recaps Alignment Evaluation - Part-of-speech Selec-
tion

The results for this section were somewhat surprisingly low. We postulate that
perhaps there were not enough words with the desired part of speech to accurately
compare the relative placement of each document in the Dynamic Time Warping al-
gorithm. To make up for this word deficiency, we try to compare more than one
transcript at a time, as described in Section 3.3.4.

Moving window

The last alignment method tested for transcripts and scene recaps was what we
call a ’moving window’. We use this method to help improve the part-of-speech selec-
tion method. We call this method a moving window because we compare a different
and subsequent selection of transcripts instead of one transcript at a time. For each
current transcript we want to find the distance of with each scene, we also take the
transcript that comes immediately before and the transcript that comes immediately
after. Figure 3.14 shows a representation of this method. Each dot represents a tran-
script. The red dot is the current transcript and the box shows what transcripts are
taken in context with it. This method is used to give us more tokens to work with
and more context for each transcript as some of the transcripts can be quite short or
very reliant on surrounding context to make sense.



3.3. ALIGNMENTS 41

Figure 3.14: Moving Window Representation

We then filter the tokens as described in the previous section to compare only
the nouns and verbs of each transcript and scene. Next, we take the word vectors of
these nouns and verbs, and use the individual word vector method to find the cosine
similarity of the two documents using the word vectors with the smallest distance of
the word vectors calculated.

F-measure
Episode 1 0.852
Episode 2 0.672
Episode 3 0.805
Episode 4 0.853
Episode 5 0.774
Average 0.791

Table 3.7: Transcripts & Scene Recaps Alignment Evaluation - Moving Window

Table 3.7 shows considerable improvement over the part-of-speech selection align-
ment (we can compare an average F-measure of 0.121 for the part-of-speech selection
with the average F-measure obtained with this method: 0.791) and also slightly im-
proves our scores from both word2vec alignments and the doc2vec alignment (refer to
Tables A.1 and A.2 for a side by side comparison). This implies that our other align-
ments probably suffered for a lack of text with which the method can use. In Section
3.3.5 we move on to a new alignment that suffers less from an insufficient quantity
of text.

3.3.5 Scene Recaps & Chapters Alignment
This section, like Section 3.3.4, details various alignment methods to align two

sections of the Game of Thrones corpus so that we can augment our narrative charts
with more information. Here we chronicle four methods to align scene recaps from
the episodes with chapters from the first book. Unlike our previous alignments, we
cannot use the Dynamic Time Warping algorithm. This is because these two sets of
documents do not necessarily follow each other in chronological order. An additional
difficulty occurs in that significant sections of both the book and the episodes do not
occur in each other. To overcome these obstacles, we use a simpler comparison method
where the smallest distance between two sections indicates an alignment, and in
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certain cases we introduce a cut-off value to specify that a section has no alignment.
We say that one chapter could be aligned with multiple scenes but each scene only
has one chapter it can be aligned with, if at all, since some scenes in the series do not
occur in the books. Table A.3 in the Annex shows a comparison of all the evaluation
methods used in this section side by side.

Tokens in common

We create a baseline for this alignment by starting with a very simple method:
tokens in common. Text is preprocessed and tokens are found in the same way as
has been described in earlier sections. The a distance matrix is also created in the
much the same way as earlier alignment methods, with the number of tokens not in
common stored in a matrix for each scene and chapter. Then we take the lowest of
these numbers and declare that chapter and scene aligned. For this alignment we
did not have a cut-off value as the distance scores were all very close and no pattern
in the values of correct and incorrect alignments was found.

F-measure
Episode 1 0.338
Episode 2 0.355
Episode 3 0.333
Episode 4 0.615
Episode 5 0.308
Average 0.389

Table 3.8: Chapters & Scene Recaps Alignment Evaluation - Tokens in Common

The results for this tokens-in-common method serve as our baseline for the chap-
ter & scene alignments but are not terribly impressive as seen in Table 3.8. One
of the main issues is that many scenes in the episodes do not appear in the books.
Another great difficulty is that many of themes throughout the books and series are
similar and use similar vocabulary. Without the constraint of chronological order, an
early scene featuring a character can easily be aligned with a later chapter featuring
that same character, creating a misalignment.

Lemmas in common

We try to improve upon our baseline by comparing the number of lemmas in com-
mon. The same steps were taken as in the tokens-in-common method with the excep-
tion that before the tokens can be compared between the scenes and chapters, they
are first lemmatized using the Spacy library. Again, no cut-off value was used.

In hindsight, the fact that the average performance for lemmas in common is
lower than that of tokens in common is unsurprising. Since there are fewer con-
straints on what can be aligned with what, less precision in word form can make
more of a difference in performance.

In addition to this difficulty, the other difficulties mentioned earlier in Section
3.3.5, such as scenes from the television series not appearing in the books, and similar
themes and vocabulary, still apply.
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F-measure
Episode 1 0.225
Episode 2 0.355
Episode 3 0.481
Episode 4 0.462
Episode 5 0.308
Average 0.366

Table 3.9: Chapters & Scene Recaps Alignment Evaluation - Lemmas in Common

TF-IDF

For this next section, each chapter and scene is transformed into a TF-IDF vec-
tor using Scikit-Learn. Scikit-Learn is a Python library containing supervised and
unsupervised machine learning algorithms. The TF-IDF vectors for each document
contain all the TF-IDF scores of the individual words in that document. Once the
vectors for each document are calculated, the cosine similarity of each scene is then
taken with each chapter and the two with the maximum similarity is kept as the
alignment for for each scene.

F-measure
Episode 1 0.479
Episode 2 0.452
Episode 3 0.593
Episode 4 0.5
Episode 5 0.308
Average 0.466

Table 3.10: Chapters & Scene Recaps Alignment Evaluation - TF-IDF

The results for this method, as seen in Table 3.10, show a general improvement
over the scores from our baseline and the scores from the lemmas in common method.
This is likely due to the fact that we are comparing only important words rather than
all words in a document.

TF-IDF with Transcripts

As we saw in our moving window experiments in Section 3.3.4, sometimes more
text used in the alignment can lead to better results. We also saw that some dialogue
from the transcripts was taken verbatim from the books but that this dialogue was
not frequently repeated in the scene recaps. To make use of these observations we
conduct an experiment using a triple alignment between chapters & scene recaps &
transcripts, instead of the two document pairs we have thus far been working with.
However, this alignment was not performed using the three sets of documents at
once. We first executed a scene recaps & transcripts alignment using the method
which had the best alignment results with a 0.83 F-measure: tokens in common. We
then consider that all dialogue from the transcripts aligned with a scene is part of the
scene and included in the total text used in the scene recaps & chapter alignment.
This second alignment is performed exactly as in Section 3.3.5, just with the addition
of the extra text in the scene recap.
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F-measure
Episode 1 0.563
Episode 2 0.484
Episode 3 0.519
Episode 4 0.615
Episode 5 0.385
Average 0.513

Table 3.11: Chapters & Scene Recaps Alignment Evaluation - TF-IDF with Tran-
scripts

Table 3.11 contains the best overall results attained for the chapters & scene
recaps alignment, which reflects and supports the ideas we had prior to testing. Fur-
ther developing experiments on multiple alignments such as this could be an inter-
esting and productive expansion to this study.

3.4 Information Extraction
In this section we extract information from some of our best-performing align-

ments in order to enhance the narrative chart by adding in the information, in as
clear and as aesthetically pleasing a way as possible. We use a variety of methods
described in Section 3.2 to extract characters, locations, and important words from
the text.

3.4.1 Character and Location Extraction
As mentioned in an earlier section, one of the main limitations of our method is

that is could not recognize characters in scenes with non-speaking roles. Those char-
acters have therefore thus far been left out of the narrative charts. Other information
discussed earlier but hitherto left off the chart is location information. We do have a
list of locations in the annotations section of our corpus, but it was our intention to
test a text-based recognition tool on our corpora to find the locations and show how
it could be done using the methods in Section 3.2. To overcome this impediment and
find these previously invisible characters and unidentified locations, we will use the
information from the transcripts & scene recaps and scene recaps & chapters align-
ments. This is done by concatenating the aligned texts to form one document per
scene to search within. We use two methods to extract the characters and locations:
Named Entity Recognition and List Matching, which is similar to our tokens in com-
mon method, as it takes tokenized text from one document and compares it to the
tokens of another document.

Named Entity Recognition

The first method of information extraction tested was Named Entity Recognition
using Stanford NER7 and Spacy tools. Stanford NER has multiple pre-trained models
available but the most accurate on our corpus, using a manual comparison with a
manual extraction, performed at the same level as the built-in model of Spacy so
for ease of use, the results reported were ultimately extracted using Spacy. Samples

7http://nlp.stanford.edu/ner/

http://nlp.stanford.edu/ner/
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of the extractions are shown in Tables A.6 and A.5 in the Annex. The tools were
tested on concatenated alignment text using the TF-IDF with transcripts method to
align transcripts & scene recaps & chapters as described in Section 3.3.5. Once the
alignments were established with preprocessed text, they were then reverted to the
original texts using index references to recreate the aligned text from the original
corpus. This step is important because capitalization and punctuation can strongly
effect NER tools.

An initial test showed that not all characters were recognized as people but some
inanimate entities were (e.g., “Moat Cailin”, “Winterfell”, etc.). This could be im-
proved by training a new model on Game of Thrones data but that is outside the
scope of this thesis. Another issue with the character recognition is that many char-
acters are referred to in more than one way throughout the television series, books,
and scene recaps and it is only sometimes the version that has thus far been used for
a character in making the narrative charts (e.g., “the Hound” vs. “Sandor Clegane”).
This could be solved by manually making lists for each character of all their names
and aliases, but that is also outside the scope of this thesis.

The location extraction was even less successful. We did two tests, one taking all
the tokens with a LOC (location) tag and the other taking words that have either a
LOC or ORG (organization) tag as suggested in [Lingad et al., 2013]. We then said
that the location of a scene was the entity that was most frequently extracted for that
scene, as each scene should only be taking place in one location. There were not many
locations found just using the LOC tag. More locations were found with LOC and
ORG but with considerably more noise as well, as many characters were mistakenly
included in this extraction. Table A.5 in the Annex shows these extractions.

Due to the difficulties explained in this section for using entities recognized by
either Stanford NER or Spacy in our narrative charts, we instead focus on matching
names from a list to find locations and non-speaking characters, as explained in the
next section.

List Matching

The second way we tried to extract the names was by matching the text from the
transcripts & scene recaps & chapters alignment to our list of characters gathered
from the Game of Thrones Wiki. We matched only by first name as forcing the name
to match both first and last resulted in many if not most names not being extracted
and searching just by last name was too ambiguous. The names we find using this
method also need to be transformed before matching the format we use to create our
charts so we can find the correct character id to place in the JSON file. This method,
while not perfect, generates less noise than the NER method, which makes for a
simpler transformation.

We did not include any characters with ambiguity, e.g., when a first name that was
found matched two or more characters (e.g., “Jon Arryn” and “Jon Snow”). One way to
improve this and reduce ambiguity in order to be able to use these characters found
would be to create a network of character relationships like in [Vala et al., 2015].
This would allow us to determine that if an ambiguous character name often ap-
pears within a network of other characters and at one time is referred to in a non-
ambiguous way, we can expand this reference to all the characters with the ambigu-
ous name who appear within this network.
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3.4.2 Important Word Extraction
To further enhance the narrative charts and go beyond the original xkcd charts,

we put lists of the most important words per chapter, for each chapter aligned in
the data used to make the chart. To find these important words we took the TF-
IDF scores of each word for each chapter in the first book. This was performed on
preprocessed text in exactly the same way as in Section 3.3.5 but only using the
chapters, not the scene recaps. The words with the top five scores for each chapter
were kept as most important and placed at the bottom of the narrative charts. The
most important words for the first five chapters, including their frequency and TF-
IDF scores can be found in the Annex in Table A.4.

3.5 Conclusion
In this section we used different alignment methods to align various parts of our

Game of Thrones corpus. We saw how each of our experiments increased or decreased
the effectiveness of our narrative chart. We described the process for aligning char-
acters & episodes, transcripts & subtitles, characters & scenes, transcripts & scene
recaps, scene recaps & chapters, as well as extraction techniques to make use of these
alignments in the charts. We provided initial evaluations for the performance of each
of these steps. We saw that to align transcripts & scene recaps, the best method was
using tokens as common as features in the Dynamic Time Warping Algorithm. We
also found that using Tf-IDF vectors as features in a majority comparison algorithm
was effective in aligning chapters & scene recaps, but that we got even better results
when performing a triple alignment and including aligned text from the transcripts
to the scene recap text before performing the chapters & scene recaps alignment with
TF-IDF. We found that information extraction using NER tools introduced extra lay-
ers of difficulty and our list matching method worked more simply.
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4.1 Introduction
Our goal in this study has been to create narrative charts for the first season

of Game of Thrones using information gleaned from alignments of our corpora and
extractions of various information therein. We have already evaluated the perfor-
mance of our alignments and extractions, now we present our final narrative charts
and try to evaluate their accuracy. We can evaluate the charts’ accuracy by comparing
them with charts generated using manually extracted information. The locations and
characters were manually extracted from watching the first episode of the television
series and personal knowledge of the series and all sections of the corpora to obtain
as much accuracy as possible. With the exception of the first automatically generated
chart which shows the entire first season of the television series, in this section we
use Episode 1 to illustrate the capacities of each alignment or extraction in making
the narrative chart. The narrative charts present a chronological progression of in-
cremental improvements. Our first chart was produced after the character & episode
alignment, and our second chart after the character & scene alignment. After we
performed all our transcript & scene recap and scene recap & chapter alignments,
we used the methods with the best results to create text outputs from which we then
extracted various information. This information, along with the character & scene
alignment, appears in our third and fourth charts. The final chart is shown including
all the previous improvements and also a list of important words per chapter.

4.2 Narrative Charts
We present two types of narrative charts in this section, manual and automatic.

The first chart shown is made with manually aligned data. We refer to this chart
when showing the progress of our charts made with automatically generated data,
as it shows the kind of result we would like to attain automatically. The next section
presents our series of progressively improving automatically generated charts.
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4.2.1 Manual Chart
Figure 4.1 shows our narrative chart crafted using the same library as the au-

tomatically generated charts but using entirely manually aligned data. This chart
serves as a reference to our automatically generated charts. Scene segmentations
were judged using the scene recaps from the Game of Thrones Wiki. The episode
was watched with these segmentations used as a guide to list all named characters
in each scene. The character names were then converted to their ids using the same
reference as the automatically aligned characters. Location information was more
difficult to judge from watching the episode, so the location information from the an-
notations section of the corpus was heavily relied upon. An important note is that
there can be quite a bit of ambiguity in the location information, as some locations
such as “the North” are relative (e.g., when a character is it Winterfell, they can ei-
ther refer to the North as the land where the currently are, or it could be further away
and geographically North of where they are standing) and other locations can be de-
scribed from different levels of precision, for example “Winterfell” is located in “the
North”. The chapters listed are those from fan information and the important words
were calculated with TF-IDF as they are in the automatically generated charts, as
manually finding all the important words in a chapter would be extraordinarily time
consuming.

Chapter 1 gared, waymar, royce, sable, lordling Chapter 2 bran, pup, greyjoy, pups, jon
Chapter 3 ned, catelyn, godswood, weirwood,

faith
Chapter 4 illyrio, dany, magiste, viserys,

khal

Chapter 5 ned, lantern, crypt, robert, tombs Chapter 6 jon, ghost, benjen, dwarfs, dwarf

Chapter 7 ned, catelyn, luwin, lens, maester Chapter 9 bran, gargoyle, ledge, pony, roof

Chapter 12 dany, illy, drogo, khal, dothraki

Figure 4.1: Narrative Chart for Episode 1 Using Manually Extracted Characters and
Locations

4.2.2 Automatically Generated Charts
Our first automatically generated chart is shown in Figure 4.2. It is the resulting

narrative chart for the alignment of characters & episodes using the Tapestry library.
We were initially intending to use this alignment as the base information to create
our narrative chart but the results were unsatisfactory and the chart is very unclear.
Unlike the book, where each chapter focuses on one character, the series splits up
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the points of view to show at least a small part focusing on each of the main char-
acters in most episodes. This resulted in an illegible chart with most lines passing
through each episode point. The ‘start’ and ‘duration’ times here were chosen for
graph readability and do not reflect the actual episode run-times.

Figure 4.2: Characters & Episodes Alignment
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Figure 4.3 shows the result of the character & scene alignment. From this point
on in the experiments, the second charting library was used to create the narrative
charts. It provides additional information by showing approximately at what point
each character enters into the episode instead of presenting them all at once at the
beginning as if all the characters are actually present in the first scene. Also, it
appears more legible and the aesthetic is preferable as it is closer to that of the xkcd
charts.

When we compare the character alignment in this chart to the character align-
ment in the manually aligned chart we can see that is looks a bit sparse. There are
fewer characters contained in the chart and less vertical complexity. This is due to
the fact that the scenes in this chart only contain characters with speaking roles and
ignore other characters who are present but silent. The chart contains some other
errors, such as Robert Baratheon being present with the Targaryens in scene 16, due
to quick scene cuts causing the scene segmentation data to be slightly off.

Figure 4.3: Narrative Chart for Episode 1 Using Character and Scene Alignments

To help resolve the missing characters issue, we extracted characters from scene
recaps by list matching and added their character ids to the lists of character ids we
already had for each scene. As we can see in the result in Figure 4.4, we found many
of the missing characters for each scene but also added some characters to scenes
where they were just being talked about. Nevertheless, this chart is much closer in
appearance to the manually aligned chart in section 4.2.1.

Figure 4.4: Narrative Chart for Episode 1 Including Characters Found in Scene Re-
caps

Precision Recall F-measure
before extraction 0.921 0.681 0.711
after extraction 0.722 0.838 0.735

Table 4.1: Character Extraction Evaluation - Episode 1

We can see in Table 4.1 a comparison evaluation of the characters found per scene
using speaking characters (before extraction) and the characters once we added in the
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extracted information (after extraction), using a manual alignment as a reference.
After adding in extracted information our precision decreased as was to be expected
since we since our method also adds characters who are spoken about but not present
as well as those who are present. Our recall increased, showing that we found many
of the characters with no lines in each scene. We compare the F-measures to find
that they are similar, yet show a slight overall improvement in the accuracy of our
narrative chart when using our extraction methods to add characters to scenes.

In our fourth chart, seen in Figure 4.5, we took our previous chart with the charac-
ter extractions added, and added another level of information: location. This informa-
tion was extracted from the scene recap & transcript & chapter alignments described
in section 3.3.5. The location information is shown in the bars of color added on top
of each scene. A key containing the location names can be found under the chart. For
scenes in which no location was found, no color was added.

We can see in a comparison of the manually aligned chart that the location infor-
mation is much more varied than it should be. As briefly discussed in Section 4.2.1,
there are some location ambiguities causing errors such as “the North”, as it can re-
fer either to a large area of land north of the Twins (a location in the middle of one
of the Game of Throne’s world’s continents), ruled by the Warden of the North or a
relatively northern location to where the speaking character is. As such, “the North”
could simply be “the North” or it could be confused with either Winterfell, the Wall,
the Haunted Forrest, etc.

We performed an evaluation of the location extraction for episode 1 using the
locations automatically extracted and the locations found manually. As we can see in
Table 4.2, the recall is higher than the precision.

Precision Recall F-measure
Episode 1 0.444 0.667 0.533

Table 4.2: Location Extraction Evaluation - Episode 1

Figure 4.5: Narrative Chart for Episode 1 Including Characters Found in Scene Re-
caps and Locations Found in Scene Recap & Transcript & Chapter Alignments

Figure 4.6 shows our final narrative chart. It includes both the character and
location extracted information described above and also important words per chapter.
The important words were extracted using TF-IDF as described in section 3.4.2. The
chapters listed as those that were found to be aligned with the scenes in section 3.3.5.

While the important words within the chapters are reliably accurate, the chapters
chosen were based on an alignment with a 0.563 F-measure. Thanks to a fan’s episode
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& chapter alignment1, we can see that the chapters should have been 1-7, 9, and 12.
Despite the slight lack in precision, we can see overall that the effect of the auto-

matically generated chart and the manually aligned chart is very similar.

Chapter 1 gared, waymar, royce, sable, lordling Chapter 2 bran, pup, greyjoy, pups, jon

Chapter 4 illyrio, dany, magiste, viserys, Chapter 5 ned, lantern, crypt, robert, tombs

khal Chapter 7 ned, catelyn, luwin, lens, maester

Chapter 6 jon, ghost, benjen, dwarfs, dwarf Chapter 10 tyrion, jaime, tommen, chayle,

Chapter 8 arya, septa, mordane, stitches, differ

needlework Chapter 23 arya, needle, septa, mordane,

Chapter 12 dany, illy, drogo, khal, dothraki sansa

Chapter 38 bran, robb, stiv, theon, osha Chapter 52 sansa, boros, joffrey, jeynes,

jeyne

Figure 4.6: Narrative Chart for Episode 1 Including Characters Found in Scene Re-
caps, Locations Found in Scene Recap & Transcript & Chapter Alignments, and Im-
portant Words per Chapter

4.3 Conclusion
We can see that the charts we created after each alignment or extraction task

improved incrementally with each new chart. We compared the charts to a manu-
ally aligned chart and saw the final chart generated shares many similarities with
the manual chart. However, the final chart generated is far from being completely
accurate. While the character extraction helped the overall accuracy of the graph,
the location extraction has more room for improvement. We will discuss some of the
possible sources of error in the next section.

1http://joeltronics.github.io/got-book-show/bookshow.html

http://joeltronics.github.io/got-book-show/bookshow.html
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5.1 Introduction
In this chapter we take a global view of this study and we discuss some of the

successes we experienced as well as some of the limitations and potential sources of
error in our experiments. We also discuss what issues could arise in future studies
on alignment with the purpose of creating a narrative chart and propose a potential
solution. Overall, we succeeded in our mission to create a narrative chart based off
Game of Thrones. However, instead of creating one chart based off the entire first
book and season of the television series, we reduced the complexity and increased
legibility by creating one chart for each episode. While the narrative charts were
successfully made, the alignments and extractions used to create them contain some
room for improvement.

5.2 Summary of the Results
In terms of creating a visual representation of our Game of Thrones corpus, this

study was a success. As planned, we created a narrative chart resembling the charts
from xkcd. The character interactions are shown over a period of time, helping to
clarify who is where and when for each of the people in the series.

We successfully identified many characters with non-speaking roles in a scene
using only text clues. We also identified locations from the text and added them in a
color-coded fashion to improve our narrative chart. Lastly, we went one step further
than the xkcd charts and added lists of important words per chapter to help convey
the most important characters and concepts in an episode at a glance.

This was accomplished by aligning sections of the corpus. This alignment became
more difficult the more different the texts we were trying to align were. We saw that
sometimes the simplest method can give us the best results. This was seen especially
in the transcripts & scene recaps alignment (Section 3.3.4), where the measure of
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number of tokens in common outperformed other more complex methods like using
word embeddings or part-of-speech filters.

We also saw in the chapters & scene recaps alignment experiments (Section 3.3.5),
that combining alignment methods and corpora can yield interesting and more accu-
rate results. We did this by taking the best alignment methods thus far for both
transcripts & scene recaps (number of tokens in common) and chapters & scene re-
caps (TF-IDF scores) and creating a two step process to align all three transcripts &
scene recaps & chapters. The result of this triple alignment helped boost the accu-
racy of the chapters & scene recaps alignment. Further research could attempt to
improve the accuracy of the alignments in this study by exploring alignment method
combinations and multiple alignment for sections of the corpora.

5.3 Limitations
There were many potential sources for error in our alignments and extractions.

Some of these errors were within but some were outside of our control. We deter-
mined the main reason for a less than perfect alignment between the transcripts &
the subtitles was an inclusion of additional data from one or the other documents.
This inclusion usually takes the form of interjections such as “uh” or “hmm” or sound
effects included from the subtitles such as “(Horses galloping)” or “(Dothraki speak-
ing)”. As mentioned in section 3.3.2, the sound effects were kept for possible improve-
ment in a subtitle & chapter or subtitle & scene recap alignment. The scene recaps
& transcripts alignment presented more difficulty than the transcripts & the subti-
tles alignment due to the greater difference in the two documents’ texts. The main
difficulties were as follows:

• Characters talking about other characters who appear in adjacent scenes

• Scenes that have little to no dialogue in them

• Similar themes in multiple scenes

• Longer sequences of very short transcripts

• Character overlap in adjacent scenes

• Transitions between scenes (moving window method (see Section 3.3.4))

These issues all blurred the difference between the scenes or transcripts. When
for example a sequence of scene recaps share the majority of their defining words,
the transcripts that would normally be aligned with those scenes could more easily
be aligned with an incorrect scene, because the defining words are used in both scenes
instead of just the correct scene.

In our final alignment, that of scene recaps & chapters, our two sources of text
were even more disparate. The two source documents not only no longer followed
the same chronological order, but each of them also contained a significant amount
of text not contained in the other. We tried to solve this issue by creating a null
alignment, where a scene that does not exist in the document with which we are
attempting an alignment is aligned instead with a placeholder to show that it does
not exist, rather than simply creating an incorrect alignment. This technique of
dealing with these departures from the storyline is seen in [Tapaswi et al., 2015] but
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this was not as simple in our case using only text cues. When the two documents
no longer follow the same storyline, they still contain similar vocabulary such as
character names, places and common nouns like “sword” and “horse” that appear in
many scenes and chapters. For example, this can easily be seen in the final narrative
chart when looking at the locations. Many of the “Vaes Dothrak” scenes should be
labeled “Pentos”. The scenes set in both the Pentos and Vaes Dothrak locations come
from chapters about Daenerys Targaryen. All of the principle characters and themes
in these scenes are the same which caused Daenerys-central scenes to be aligned
with the incorrect Daenerys-central chapters.

5.4 Future Studies
One issue that could arise in the continuation of this study is an issue of data

availability or formatting. Due to its popularity, Game of Thrones has a wide fan
base who collect data on and write about the series’ content. As we saw in the Re-
lated Work section, other researchers have also made use of this wealth of compa-
rable data and produced their own additions such as the scene segmentations from
[Tapaswi et al., 2015] or the location annotations provided by LIMSI. We were able
to perform so many experiments because the amount of information available is so
vast. Repeating the methods listed in this study to generalize to other series or events
could prove difficult if the series generalized to does not have as many resources.

However, much of this difficulty could be resolved using other automatic methods.
If manual transcripts are not available, they can be constructed using speech-to-text
methods for the dialogue lines and using speaker identification methods, such as the
one described in [Roy et al., 2015], to add speaker names to each of the lines of dia-
logues. Face detection, as used in [Tapaswi et al., 2015], is an automatic and accurate
way to place characters in scenes and episodes. Finally, automatic text summariza-
tion methods, like the ones elaborated on in [Mani and Maybury, 1999], could be used
to create summaries out of longer texts, to add to and enhance the narrative chart.

5.5 Conclusion
In this chapter we discussed the performance and limitations of our methods and

study. We also discussed an issue that anyone continuing this work in another do-
main might face, and provided a possible solution to the problem.





CONCLUSION
In this study we discussed and experimented with the problem of text-based align-

ment methods. Our objective was to clarify and illustrate the Game of Thrones char-
acter interactions by making a visual representation, similar to the narrative charts
from the webcomic xkcd, of the first season of the series. To accomplish this task we
gathered comparable corpora centered on our subject, and applied a number of align-
ment techniques to group various aspects of it. We aligned characters & episodes,
characters & scenes, subtitles & transcripts, transcripts & scenes, and scenes & chap-
ters. We evaluated the accuracy of our alignments and compared our automatically
generated results with manually generated ones. We extracted information from our
alignments to create enhanced narrative charts.

Our final narrative chart displays characters by scene and location. This suc-
cessfully helps to clarify character interactions within the series by showing what
characters are with what other characters at a given point in time, and also where
they are. Our chart goes one step further and includes lists of important words per
chapter for each chapter that was aligned with the episode. This continues to help
clarify the Game of Thrones storyline in that we can see at a glance the most impor-
tant characters and concepts in an episode.

This type of narrative chart is useful in more ways than simply showing enhanced
Game of Thrones timelines. With slight modifications, it could be used for other tele-
vision series or even in real-world events using news media of differing types or other
factual information. A fine example of one such graph, generated given manually as-
sembled data but using the same chart library as is used in this study, is a visual
representation of the ICAC scandal.1 The data to create this graph could have, in-
stead of being manually put together, been gathered on news websites, aligned from
transcripts to articles or articles to other articles treating the same topic, then parsed
to form the graph using the methods described in this paper.

Another hypothetical use for this type of narrative chart is to apply alignment
methods to information from the current US elections such as transcripts from de-
bates, summaries of debates with opinions, etc., to create a timeline graphic. This
would potentially help American citizens make a more informed choice when vot-
ing by better understanding the timeline of events, opinions and candidate’s policies
during the lead up to the elections.

These ideas are just some of the myriad uses text alignment and text extraction
could be applied to. Our main issue in this study was attaining satisfactory accuracy.
Our final chart is close to our manually aligned ground truth, but it still contains
room for significant improvement. With the inclusion of other forms of media such as
audio or video, alignment accuracy could increase, making narrative chart generation
more precise with even more elaborate graphs produced.

1http://www.abc.net.au/news/2014-08-21/untangling-the-web-how-the-icac-scandal-unfolded/
5686346

http://www.abc.net.au/news/2014-08-21/untangling-the-web-how-the-icac-scandal-unfolded/5686346
http://www.abc.net.au/news/2014-08-21/untangling-the-web-how-the-icac-scandal-unfolded/5686346
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Method #1 Method #2 Method #3 Method #2’ Method #3’
Tokens Tokens Tokens Lemmas Lemmas

Episode 1 0.006 0.854 0.864 0.867 0.851
Episode 2 0.003 0.679 0.754 0.716 0.689
Episode 3 0.014 0.893 0.825 0.839 0.862
Episode 4 0.009 0.920 0.868 0.905 0.863
Episode 5 0.009 0.806 0.780 0.806 0.764
Average 0.008 0.830 0.818 0.826 0.805

Table A.1: Transcripts & Scene Recaps Alignment Evaluation - Comparison of all
Methods - Part I

Method #4 Method #5 Method #6 Method #7 Method #8
Word2vec Word2vec Doc2vec Part-of-

speech
Moving
Window

Episode 1 0.589 0.851 0.658 0.477 0.852
Episode 2 0.490 0.699 0.765 0.048 0.672
Episode 3 0.593 0.808 0.819 0.048 0.805
Episode 4 0.778 0.823 0.800 0.021 0.853
Episode 5 0.198 0.757 0.801 0.012 0.774
Average 0.529 0.787 0.769 0.121 0.791

Table A.2: Transcripts & Scene Recaps Alignment Evaluation - Comparison of all
Methods - Part II



62 APPENDIX A. ANNEX

Method A Method B Method C Method D
Tokens Lemmas TF-IDF TF-IDF + T

Episode 1 0.338 0.225 0.479 0.563
Episode 2 0.355 0.355 0.452 0.484
Episode 3 0.333 0.481 0.593 0.519
Episode 4 0.615 0.462 0.5 0.615
Episode 5 0.308 0.308 0.308 0.385
Average 0.389 0.366 0.466 0.513

Table A.3: Chapters & Scene Recaps Alignment Evaluation - Comparison of all Meth-
ods

Chapter Word Frequency TF-IDF score

Chapter 1

gared 30 0.02504
waymar 22 0.01671
royce 22 0.01089
sable 6 0.00564
lordling 7 0.00364

Chapter 2

bran 40 0.00793
pup 10 0.00729
greyjoy 12 0.00554
pups 8 0.00552
jon 30 0.00523

Chapter 3

ned 17 0.00655
catelyn 15 0.00624
godswood 7 0.00495
weirwood 4 0.00386
faith 3 0.00322

Chapter 4

illyrio 30 0.01599
dany 28 0.01278
magister 16 0.00905
viserys 19 0.00757
khal 18 0.00717

Chapter 5

ned 56 0.01177
lantern 5 0.00423
crypt 5 0.00423
robert 32 0.00338
tombs 4 0.00308

Table A.4: Top Words per Chapter - TF-IDF - First 5 Chapters
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scene LOC & ORG LOC List Matching Manual
1 Ser Waymar Royce Haunted Forest the north Haunted Forest
2 N/A N/A winterfell The North
3 Winterfell N/A winterfell The North
4 N/A N/A winterfell Winterfell
5 Septa Mordane Donnis winterfell Winterfell
6 Winterfell Eddard kings landing Winterfell
7 Eddard N/A the wall The North
8 North North the north The North
9 Kings Landing Casterly Rock kings landing King’s Landing
10 Winterfell N/A winterfell Winterfell
11 Kings Landing N/A kings landing Winterfell
12 Winterfell N/A winterfell Winterfell
13 N/A N/A N/A Winterfell
14 N/A N/A winterfell Winterfell
15 Winterfell N/A winterfell Winterfell
16 Queen Cersei N/A N/A Winterfell
17 House East kings landing Winterfell
18 N/A N/A winterfell Winterfell
19 Tyrion N/A winterfell Winterfell
20 Winterfell N/A winterfell Winterfell
21 Usurper the Jade Sea vaes dothrak Pentos
22 Dothraki N/A vaes dothrak Pentos
23 Viserys the Jade Sea vaes dothrak Pentos
24 Grand Maester Pycelle N/A kings landing Winterfell
25 N/A N/A N/A Winterfell
26 Night North the north Winterfell
27 N/A N/A the wall Winterfell
28 Grand Maester Pycelle N/A kings landing Winterfell
29 Eddard N/A N/A Winterfell
30 Sansa N/A kings landing Winterfell
31 House Vale the north Winterfell
32 Dothraki N/A vaes dothrak Pentos
33 Drogo N/A N/A Pentos
34 N/A N/A N/A Winterfell
35 Winterfell N/A winterfell Winterfell

Table A.5: Location Extraction by NER, List Matching, and Manual Extraction -
Episode 1
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scene characters
1 Ser Waymar Royce, Mallisters, Wills, Ser Waymar, Gared, Will, Ser

Waymar, Mormont, Castle Black, Robert, Maester Aemon, Royce
2 House Stark, Stark
3 N/A
4 House Tully, Lord Eddard Stark, Robb Stark, Catelyn, Lady Cate-

lyn, Bran Stark, Jon Snow
5 Jeyne, Eddard Starks, Theon, Poor Jon, Stark, Beth Cassel, Rodrik,

Tullys, Baratheon, Prince Tommen, Robb, Theon Greyjoy, Jeyne
Poole, Myrcella, Joffrey, Rhoyne, Beth, Ser Rodrik, Joff, Jon, Lew,
Prince Joff, Mother, Winterfell, Arya, Bran, Ser Rodrik Cassel,
Nymeria, Ser Rodrik, Sansa, Septa Mordane, Tommen, Lannister,
Lady Catelyn, Rickon, Wed Tully

6 Mance Rayder, Maester Luwin, Moat Cailin, Theon, Greyjoy, Father,
Hullen, Quent, Rodrik, Starks, Wayn, Lannisters, Stiv, Lord Ed-
dard, Robb, Joseth, Wyl, Osha, Theon Greyjoy, Hodor, Hal Mollen,
Benjen Stark, Lannister, Alyn, Hali, Rickon, Jon, Maester, Wallen,
Hallis Mollen, Brandon Stark, Grey Wind, Stark, Mother, Wolves,
Arya, Bran, Jory, Ser Rodrik Cassel, Benjen, Summer, Heward, Ed-
dard, Dancer, Robb Stark, Luwin, Hack, Jory Cassel, Maester Py-
celle, Jon Snow

7 Eddard, Starks, Bran, Jon
8 Mance Rayder, Theon, Robert, Father, Snow, Stark, Rodrik, Starks,

Robb, Theon Greyjoy, House Stark, Warden, Ser Rodrik, Greyjoy,
Jon, Nan, Lord Eddard Stark, Hullen, Winterfell, Bran, Jory, Wall,
Rickon, Eddard, Lord Stark, Jory Cassel, Jon Snow, Harwin

9 Arryn, Robert, Cersei, Hand, Jaime, Robert Baratheon
10 Catelyn

Table A.6: Character Extraction by NER - Episode 1 - First 10 Scenes
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