modélisation acoustique https://ertim.inalco.fr/ fr Mise en place d’un système robuste de reconnaissance automatique de la parole appliqué au domaine médical https://ertim.inalco.fr/node/717 <span class="field field--name-title field--type-string field--label-hidden">Mise en place d’un système robuste de reconnaissance automatique de la parole appliqué au domaine médical</span> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span>gestionnaire</span></span> <span class="field field--name-created field--type-created field--label-hidden">mar 02/02/2021 - 11:54</span> <div class="field field--name-field-auteur field--type-string field--label-above"> <div class="field__label">Auteur</div> <div class="field__item">Lucía Ormaechea Grijalba </div> </div> <div class="field field--name-field-annee field--type-integer field--label-above"> <div class="field__label">Année</div> <div class="field__item">2020</div> </div> <div class="field field--name-field-abstract field--type-string-long field--label-above"> <div class="field__label">Résumé</div> <div class="field__item">Le bon fonctionnement des systèmes de reconnaissance automatique de la parole s’avère un défi complexe dans le contexte de la traduction speech-to-speech utilisée dans le domaine médical. Ce mémoire présente un travail de recherche qui vise à construire un système robuste de reconnaissance vocale dans le cadre du projet BabelDr, un outil de traduction vocale quasi instantanée qui a été mis en place dans les Hôpitaux Universitaires de Genève (HUG) afin de favoriser l’interaction médecin-patient lorsqu’aucune langue n’est partagée. Actuellement, sa technologie de reconnaissance de la parole est issue d’un système boîte noire fourni par une société privée. Le but principal de cette étude est de rompre la dépendance à un dispositif externe en se basant sur des outils libres et qui pourront évoluer selon les besoins des HUG. Pour cela, nous proposons un système de reconnaissance vocale pour le français appuyé sur la boîte à outils Kaldi. Celle-ci permet d’effectuer une transcription automatique en temps réel, utilisant des modèles acoustiques hybrides HMM-DNN et une modélisation linguistique adaptée au discours médical caractéristique du contexte d’urgences. À la lumière des résultats globaux observés, une importante amélioration est constatée par rapport à l’approche boîte noire précédemment utilisée.</div> </div> <div class="field field--name-field-tags field--type-entity-reference field--label-above"> <div class="field__label">Mots-clés</div> <div class="field__items"> <div class="field__item"><a href="/taxonomy/term/2267" hreflang="fr">reconnaissance automatique de la parole</a></div> <div class="field__item"><a href="/taxonomy/term/2665" hreflang="fr">modélisation acoustique</a></div> <div class="field__item"><a href="/taxonomy/term/2666" hreflang="fr">modélisation linguistique</a></div> <div class="field__item"><a href="/taxonomy/term/2667" hreflang="fr">Kaldi</a></div> <div class="field__item"><a href="/taxonomy/term/2668" hreflang="fr">BabelDr</a></div> <div class="field__item"><a href="/taxonomy/term/2669" hreflang="fr">traduction vocale quasi instantanée</a></div> </div> </div> <div class="field field--name-field-document field--type-file field--label-above"> <div class="field__label">Fichier</div> <div class="field__item"> <span class="file file--mime-application-pdf file--application-pdf"> <a href="/sites/default/files/memoireormaechea.pdf" type="application/pdf">memoireormaechea.pdf</a></span> </div> </div> Tue, 02 Feb 2021 10:54:09 +0000 gestionnaire 717 at https://ertim.inalco.fr