plongements dynamiques

Reconnaissance d’entités nommées dans les tweets

Résumé
Ce travail porte sur la création d’un système de la reconnaissances d’entité nommées (REN) pour les tweets. La REN est un composant crucial pour de nombreuses applications du TAL, tels que traduction automatique et résumé automatique. Cette tâche est un sujet bien étudié dans la communauté du TAL. Néanmoins, la performance des systèmes de la REN conçus pour des textes standard est souvent gravement dégradée sur des tweets. Dans ce mémoire, nous avons proposé un système de la REN pour des tweets qui intègre deux modèles d’apprentissage automatique : le modèle à base d’ingénierie de caractéristiques peut traiter un grand volume de données en temps réel avec un résultat acceptabele et le modèle à base de réseaux de neurones peut produire un résultat de bonne qualité en terme de F mesure. Pour ce dernier, nous avons utiliser le plongement lexical dynamique qui est à l’origne de l’amélioration du résultat.